
A new acoustic sensing approach for predicting the percentage of filled rice grains based on the acoustic absorption spectrum using the Deep Spectra | ||
مهندسی بیوسیستم ایران | ||
Volume 54, Issue 4, January 2024, Pages 87-102 PDF (2.22 M) | ||
Document Type: Research Paper | ||
DOI: 10.22059/ijbse.2024.376335.665548 | ||
Authors | ||
Majid Fathi Ghalemiri1; Ali Maleki* 2; Majid Lashgari3; Ali Loghmani4 | ||
1Ph.D. Student, Department of Mechanical Engineering of Biosystems, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran | ||
2Associate professor of Mechanical Engineering of Biosystems Department, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran | ||
3Associate Professor, Department of Mechanical Engineering of Biosystems, Faculty of Agriculture, Arak University, Arak, Iran | ||
4Associate Professor, Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran | ||
Abstract | ||
Rice is recognized as one of the main cereals in the world, feeding two-thirds of the global population, especially in Asian countries. Accurate assessment of the percentage of filled grains (PFG) is crucial for the efficiency and quality of rice harvesting. Traditional methods of measuring PFG are practical and based on personal judgment. This study introduces an innovative and non-destructive approach based on an acoustic sensor alongside deep learning models to predict PFG based on the acoustic spectrum of rice grains. Using an advanced deep learning architecture, the Deep Spectrum, which works directly on raw spectral data, eliminates the need for preprocessing and enhances prediction accuracy. A modified impedance tube was used to measure the acoustic spectrum, which was then analyzed using the Deep Spectrum model to predict PFG. Results indicated that this approach significantly improves the quantitative analysis of spectral data and provides a reliable prediction of rice grain filling. The prediction accuracy of the Deep Spectrum model was significantly higher compared to traditional methods, with a low root mean square error of prediction (RMSEP) of 0.24 ± 0.05 and a coefficient of determination (R²) of 0.95 ± 0.02. This prediction is vital for assessing rice quality, breeding, and genetic research. This study introduces new perspectives and methods in the field of grain quality prediction and classification using acoustic spectrum analysis and deep learning, which could be beneficial for future research in this area. | ||
Keywords | ||
Acoustic Absorption Coefficient; Deep Spectra; Non-destructive Measurement; Rice Acoustic Sensor; Spectral Analysis | ||
References | ||
A|Lab - File Exchange - MATLAB Central https://www.mathworks.com/matlabcentral/fileexchange/93180-a-lab. Allegrini, F. & Olivieri, A. C. (2016). Anal Chem 88, 7807–7812. Boubel, A., Bousshine, S., Garoum, M., Abdelmajid, B. & Laaroussi, N. (2016). Burlando, B. & Cornara, L. (2014). Trends Food Sci Technol 40, 82–98. Caballol, D. & Raposo, Á. P. (2020). Constr Build Mater 256, 119297. Ceyhan, M., Kartal, Y., Özkan, K. & Seke, E. (2023). Multimed Tools Appl 1–23. Duan, L., Yang, W., Bi, K., Chen, S., Luo, Q. & Liu, Q. (2011). Comput Electron Agric 75, 196–203. Gasso-Tortajada, V., Ward, A. J., Mansur, H., Brøchner, T., Sørensen, C. G. & Green, O. (2010). Sensors (Basel) 10, 10027–10039. Geimer, P. R., Ulrich, ; T J, Luke, ;, Beardslee, B., Hayne, M. L., Remillieux, M. C., Saleh, T. A., Freibert, F. J., Ulrich, T. J. & Beardslee, L. B. (2022). J Acoust Soc Am 151, 3633–3640. Gheibi, A. & Hedayat, A. (2018). Ultrasonics 87, 112–125. Griffiths, S., Nennig, B. & Job, S. (2017). J Acoust Soc Am 141, 254–264. Hastie, T., Tibshirani, R. & Friedman, J. (2009). https://doi.org/10.1007/978-0-387-84858-7. Huang, S. ;, Lu, Z. ;, Shi, Y. ;, Dong, J. ;, Hu, L. ;, Yang, W. ;, Huang, C., Huang, S., Lu, Z., Shi, Y., Dong, J., Hu, L., Yang, W. & Huang, C. (2023). Sensors 2023, Vol. 23, Page 6331 23, 6331. Ioffe, S. & Szegedy, C. (2015). 32nd International Conference on Machine Learning, ICML 2015 1, 448–456. ISO 10534-1:1996 - Acoustics — Determination of sound absorption coefficient and impedance in impedance tubes — Part 1: Method using standing wave ratio https://www.iso.org/standard/18603.html. ISO 10534-2:2023 - Acoustics — Determination of acoustic properties in impedance tubes — Part 2: Two-microphone technique for normal sound absorption coefficient and normal surface impedance https://www.iso.org/standard/81294.html. Kamboj, U., Guha, P. & Mishra, S. (2021). Mater Today Proc 48, 576–582. Kingma, D. P. & Ba, J. L. (2014). 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. Koulivand, K. & Moniri, | Kamel. Kumar, A., Taparia, M., Madapu, A., Rajalakshmi, P., Marathi, B. & Desai, U. B. (2020). J Cereal Sci 95, 103037. Lecun, Y., Bengio, Y. & Hinton, G. (2015). Nature 2015 521:7553 521, 436–444. Lee, C. M. & Wang, Y. S. (2006). J Sound Vib 298, 350–365. Lee, C. M. & Xu, Y. (2009). J Sound Vib 326, 290–301. Li, Z., Chen, S., Wu, Z. & Yang, L. (2020). Https://Doi.Org/10.1177/1077546320926905 27, 332–342. Lin, P., Chen, Y. M., He, Y. & Hu, G. W. (2014). Comput Electron Agric 109, 124–133. Liu, T., Wu, W., Chen, W., Sun, C., Chen, C., Wang, R., Zhu, X. & Guo, W. (2016). Biosyst Eng 150, 79–88. Liu, X., An, H., Cai, W. & Shao, X. (2024a). TrAC Trends in Analytical Chemistry 172, 117612. Liu, X., An, H., Cai, W. & Shao, X. (2024b). TrAC Trends in Analytical Chemistry 172, 117612. Maas, A. L., Hannun, A. Y. & Ng, A. Y. (2013). Manickavasagan, A., Sathya, G., Jayas, D. S. & White, N. D. G. (2008). J Cereal Sci 47, 518–527. Mosa, A. I., Putra, A., Ramlan, R., Prasetiyo, I. & Esraa, A. A. (2019). Applied Acoustics 146, 409–419. Muthayya, S., Sugimoto, J. D., Montgomery, S. & Maberly, G. F. (2014). Ann N Y Acad Sci 1324, 7–14. Nguyên, T. T. T., Doanh, T., Bot, A. Le & Dalmas, D. (2022). Scientific Reports 2022 12:1 12, 1–9. Ni, W., Nørgaard, L. & Mørup, M. (2014). Anal Chim Acta 813, 1–14. Ostrovsky, L., Lebedev, A., Matveyev, A., Potapov, A., Sutin, A., Soustova, I. & Johnson, P. (2001). J Acoust Soc Am 110, 1770–1777. Passos, D. & Mishra, P. (2022). Chemometrics and Intelligent Laboratory Systems 223, 104520. Rinnan, Å., Berg, F. van den & Engelsen, S. B. (2009). TrAC Trends in Analytical Chemistry 28, 1201–1222. Roozen, N. B. & Piana, E. A. (2022). Applied Acoustics 198, 109002. Stender, M., Adams, C., Wedler, M., Grebel, A. & Hoffmann, N. (2021). J Acoust Soc Am 149, 1932–1945. Sun, M., Zhang, D., Liu, L. & Wang, Z. (2017). Food Chem 218, 413–421. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V. & Rabinovich, A. (2015). 1–9. Tsuruha, T., Yamada, Y., Otani, M. & Takano, Y. (2020). J Acoust Soc Am 147, 3418–3428. Yang, J., Peng, S., Visperas, R. M., Sanico, A. L., Zhu, Q. & Gu, S. (2000). Plant Growth Regul 30, 261–270. Zhang, J., Dai, L. & Cheng, F. (2021a). Journal of Food Measurement and Characterization 15, 484–494. Zhang, J., Dai, L. & Cheng, F. (2021b). Food Anal Methods 14, 389. Zhang, X., Lin, T., Xu, J., Luo, X. & Ying, Y. (2019). Anal Chim Acta 1058, 48–57.
| ||
Statistics Article View: 219 PDF Download: 176 |