تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,508 |
تعداد مشاهده مقاله | 124,128,181 |
تعداد دریافت فایل اصل مقاله | 97,235,605 |
ارزیابی عملکرد مدلهای مبتنی بر یادگیری ماشین در برآورد حداکثر عمق آبشستگی اطراف دماغه آبشکن نوع باندال لایک | ||
تحقیقات آب و خاک ایران | ||
دوره 55، شماره 6، شهریور 1403، صفحه 945-961 اصل مقاله (1.78 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.375599.669699 | ||
نویسندگان | ||
یوسف صادقی1؛ مهدی دریائی* 2؛ فرشاد احمدی3؛ سیدمحمود کاشفی پور4 | ||
1گروه سازههای آبی، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران. | ||
2گروه سازه های آبی، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران. | ||
3گروه هیدرولوژی و منابع آب، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
4گروه سازههای آبی، دانشکده مهندسی آّ و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران. | ||
چکیده | ||
در تحقیق حاضر عملکرد روشهای مبتنی بر یادگیری ماشین به منظور پیشبینی حداکثر عمق آبشستگی اطراف آبشکن نوع باندال لایک مورد ارزیابی قرار گرفت. برای این منظور سه روش مدل جنگلهای تصادفی (RF)، ماشین بردار پشتیبان (SVM) و روش برنامهریزی بیان ژن (GEP) مورد استفاده قرار گرفت. به منظور آموزش و آزمایش مدلها از 108 سری اطلاعات (87 سری برای آموزش و 21 سری برای تست) مستخرج از نتایج یک تحقیق آزمایشگاهی استفاده شد. مدلها با ترکیبهای متفاوتی (تک متغیره، دو متغیره، سه متغیره و چهار متغیره) از ورودیها (Fr: عدد فرود جریان، S/L: نسبت فاصله به طول آبشکن،θ: زاویه نصب آبشکن نسبت به ساحل و α: تخلخل قسمت نفوذپذیر سازه) مورد ارزیابی قرار گرفتند. نتایج حاصل نشان داد برای تمامی روشها در حالت ورودی تک متغیره، بیشترین و کمترین تاثیر به ترتیب مربوط به پارامترهای α و S/L بودند. در مدل SVM با افزایش تعداد ورودیها از تک متغیره به دومتغیره میانگین شاخص MAE تقریبا 2 برابر افزایش یافت. در مدل GEP نیز افزایش تعداد ورودیها از سه متغیره به 4 متغیره میانگین شاخص MAE تقریبا 5/3 برابر افزایش یافت. ولی در روش RF افزایش تعداد ورودیها منجر به افزایش دقت مدل شد و متوسط شاخص MAE در حالت 4 متغیره نسبت به سه متغیره 83 درصد کاهش یافت. در نهایت مشخص شد روش RF در برآورد عمق آبشستگی اطراف آبشکن نوع باندال لایک از عملکرد بسیار بهتری (006/0= RMSEو 009/0=MAE) نسبت به سایر روشها برخوردار بوده و این مدل با ورودیهای یکسان از پراکنش خطای کمتری برخوردار بود. | ||
کلیدواژهها | ||
آبشستگی؛ هوش مصنوعی؛ رودخانه؛ آبشکن | ||
عنوان مقاله [English] | ||
Evaluation of the performance of machine learning methods for estimating the maximum scour depth around the bandallike spur-dike | ||
نویسندگان [English] | ||
yosef sadeghi1؛ mehdi daryaee2؛ Farshad Ahmadi3؛ Seyed Mahmood kashefipour4 | ||
1Department of Hydraulic Structures, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran. | ||
2Department of Hydraulic Structures, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran. | ||
3Department of Hydrology and Water Resources , Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran. | ||
4Department of Hydraulic Structures, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran. | ||
چکیده [English] | ||
In this study, the performance of machine learning-based methods for predicting the maximum scour depth around a Bandallike spur-dike is evaluated. For this purpose, three methods of Random Forest (RF) model, Support Vector Machine (SVM), and Gene Expression Programming (GEP) were used. To train and test the models, 108 data series (87 series for training and 21 series for testing) were extracted from the results of an experimental study. The models were evaluated with four different combinations of inputs (Fr: flow Froude number, S/L: ratio of distance to breakwater length, θ: spur-dike installation angle relative to the bank, and α: porosity of the permeable structure). The results showed that for all methods in the one input mode, the parameters with the most and least impact were, in order, α and S/L. In the SVM model, the average MAE index increased by about 2 times when the number of inputs increased from one input mode. In the GEP model, the average MAE index increased by about 3.5 times when the number of inputs increased from three to four inputs mode. However, in the RF method, increasing the number of inputs led to an increase in model accuracy, and the average MAE index decreased by 83% in the four inputs mode compared to the three inputs mode. Finally, it was found that the RF method had much better performance (MAE = 0.006 and RMSE = 0.009) in estimating the scour depth around the Bandal-like spur-dike than the other methods, and this model had less error spread with the same inputs. | ||
کلیدواژهها [English] | ||
Scouring, Artificial intelligence, River, spur-dike | ||
مراجع | ||
Abbaszadeh, H., Norouzi, R., Sume, V., Kuriqi, A., Daneshfaraz, R., & Abraham, J. (2023). Sill role effect on the flow characteristics (experimental and regression model analytical). Fluids, 8(8), 235. Abbaszadeh, H., Daneshfaraz, R., Sume, V., & Abraham, J. (2024). Experimental investigation and application of soft computing models for predicting flow energy loss in arc-shaped constrictions. AQUA—Water Infrastructure, Ecosystems and Society, jws2024010. Ahmadi, F., Mehdizadeh, S., Mohammadi, B., Pham, Q. B., Doan, T. N. C., & Vo, N. D. (2021). Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation. Agricultural Water Management, 244, 106622. Azimi, H., Shabanlou, S., Ebtehaj, I., Bonakdari, H., & Kardar, S. (2017). Combination of computational fluid dynamics, adaptive neuro-fuzzy inference system, and genetic algorithm for predicting discharge coefficient of rectangular side orifices. Journal of Irrigation and Drainage Engineering, 143(7), 04017015. Bagatur, T., & Onen, F. (2016). Computation of design coefficients in ogee-crested spillway structure using GEP and regression models. KSCE Journal of Civil Engineering, 20, 951-959. Basser, H., Karami, H., Shamshirband, S., Jahangirzadeh, A., Akib, S., & Saboohi, H. (2014). Predicting optimum parameters of a protective spur dike using soft computing methodologies–A comparative study. Computers & Fluids, 97, 168-176. Breiman, L. (2001). Random Forests. Machine Learning. 45(1): pp. 5–32. Daneshfaraz, R., Norouzi, R., & Abbaszadeh, H. (2021). Numerical Investigation on Effective Parameters on Hydraulic Flows in Chimney Proportional Weirs. Iranian Journal of Soil and Water Research, 52(6), 1599-1616 (In Persian). Dehghani, R., Torabi Poudeh, H., Younesi, H., & Shahinejad, B. (2020). Daily streamflow prediction using support vector machine-artificial flora (SVM-AF) hybrid model. Acta Geophysica, 68, 1763-1778. Essam, Y., Huang, Y. F., Ng, J. L., Birima, A. H., Ahmed, A. N., & El-Shafie, A. (2022). Predicting streamflow in Peninsular Malaysia using support vector machine and deep learning algorithms. Scientific Reports, 12(1), 3883. Ferreira, C. (2002). Genetic representation and genetic neutrality in gene expression programming. Advances in Complex System, (5)4. 389-408. Ferreira, C. Gene expression programming: A new adaptive algorithm for solving problems. arXiv 2001, arXiv:cs/0102027. Hassanzadeh, Y., & Abbaszadeh, H. (2023). Investigating Discharge Coefficient of Slide Gate-Sill Combination Using Expert Soft Computing Models. Journal of Hydraulic Structures, 9(1), 63-80. He, S., Wu, J., Wang, D., & He, X. (2022). Predictive modeling of groundwater nitrate pollution and evaluating its main impact factors using random forest. Chemosphere, 290, 133388. Katipoğlu, O. M., Yeşilyurt, S. N., Dalkılıç, H. Y., & Akar, F. (2023). Application of empirical mode decomposition, particle swarm optimization, and support vector machine methods to predict stream flows. Environmental Monitoring and Assessment, 195(9), 1108. Kumar, S., Goyal, M.K., Deshpande, V., & Agarwal, M. (2023). Estimation of time dependent scour depth around circular bridge piers: Application of ensemble machine learning methods. Ocean Engineering, 270, 113611. Kumar, V., Kedam, N., Sharma, K. V., Mehta, D. J., & Caloiero, T. (2023). Advanced machine learning techniques to improve hydrological prediction: a comparative analysis of streamflow prediction models. Water, 15(14), 2572. Najafzadeh, M., Oliveto, s. (2021). More reliable predictions of clear-water scour depth at pile groups by robust artificial intelligence techniques while preserving physical consistency, Journal Soft Computing, 25:5723–5746. Norouzi, H., Nadiri, A.A., Asghari Mogaddam, A., & Gharekhani, M. (2017). Prediction of Transmissivity of Malikan Plain Aquifer Using Random Forest Method. Water and Soil Science, 27(2), 61-75 (In Persian). Nou, M. R. G., Foroudi, A., Latif, S. D., & Parsaie, A. (2022). Prognostication of scour around twin and three piers using efficient outlier robust extreme learning machine. Environmental Science and Pollution Research, 29(49), 74526-74539. Pandey, M., Ahmad, Z., & Sharma, P. K. (2016). Estimation of maximum scour depth near a spur dike. Canadian Journal of Civil Engineering, 43(3), 270-278. Pandey, M., Jamei, M., Ahmadianfar, I., Karbasi, M., Lodhi, A.S., & Chu, X. (2022). Assessment of scouring around spur dike in cohesive sediment mixtures: A comparative study on three rigorous machine learning models. Journal of Hydrology, 606, 127330. Parisouj, P., Mohebzadeh, H., & Lee, T. (2020). Employing machine learning algorithms for streamflow prediction: a case study of four river basins with different climatic zones in the United States. Water Resources Managemen,. 34, 4113-4131. Parsaie, A., Haghiabi, A. H., & Moradinejad, A. (2019). Prediction of scour depth below river pipeline using support vector machine. KSCE Journal of Civil Engineering, 23, 2503-2513. Roushangar, K., Goodarzi, S., & Abbaszadeh, H. (2024). Numerical Investigation of the Performance of Blade Groynes on Scouring and its Effect on Hydraulic Parameters of Sediment and Flow. Environment and Water Engineering, 10(1), 121-136 (In Persian). Shojaeian, Z., Kashefipour, S.M., Mosavi Jahromi, S.H., & Shafaee Bajestan, M. (2014). Experimental Study on The Local Scouring of Series of Bandal-Like spurs in Clear Water Condition. Journal of Irrigation Sciences and Engineering, 38(2), 21-32 (In Persian). Teraguchi, H., Nakagawa, H., Kawaike, K., Bans, Y., & Zhang, H. (2011). Effects of hydraulicstructures on river morphological processes. International Journal of Sediment , 26(3), 283-303. Tikhamarine, Y., Souag-Gamane, D., & Kisi, O. (2019). A new intelligent method for monthly streamflow prediction: hybrid wavelet support vector regression based on grey wolf optimizer (WSVR–GWO). Arabian Journal of Geosciences, 12, 1-20. Tripathi, R. P., & Pandey, K. (2023). Gene-expression programming for scour around spur dike. International Journal of Hydrology Science and Technology, 15(3), 295-303. Wang K., Wen, X., Hou, D., Tu, D., Zhu, N., Huang, P., & Zhang, H. (2018). Application of least-squares support vector machines for quantitative evaluation of known contaminant in water distribution system using online water quality parameters. Sensors, 18(4), 938. | ||
آمار تعداد مشاهده مقاله: 111 تعداد دریافت فایل اصل مقاله: 109 |