تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,037 |
تعداد مشاهده مقاله | 125,519,611 |
تعداد دریافت فایل اصل مقاله | 98,778,803 |
Proposing a novel attention-based deep neural network (ABCL-EHI) for EEG-based human biometric identification | ||
Journal of Algorithms and Computation | ||
مقاله 9، دوره 56، شماره 1، آبان 2024، صفحه 123-145 اصل مقاله (2.12 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jac.2024.370579.1206 | ||
نویسندگان | ||
Toktam Khatibi* ؛ Javad Zarean | ||
School of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, Iran | ||
چکیده | ||
The paper introduces a new method called ABCL-EHI for human identification using electroencephalographic (EEG) signals. EEG signals have unique information among individuals, but current systems lack accuracy and usability. ABCL-EHI addresses this by combining a convolutional neural network (CNN) and a long short-term memory (LSTM) network with an attention mechanism. This attention mechanism enhances the utilization of spatial and temporal characteristics of EEG signals. The proposed system is evaluated using a public dataset of EEG signals from 109 subjects performing motor/imagery tasks. The results demonstrate that ABCL-EHI achieves high accuracy, with F1-Score scores of 99.65, 99.65, and 99.52 when using 64, 14, and 9 EEG channels, respectively. This outperforms previous studies and highlights the system's reliability and ease of deployment in real-life applications, as it maintains high accuracy even with a small number of EEG channels and allows users to perform various tasks while recording signals. | ||
کلیدواژهها | ||
Healthcare Data Analytics؛ Machine Learning؛ Physiological Signal Processing؛ CNN؛ LSTM | ||
آمار تعداد مشاهده مقاله: 167 تعداد دریافت فایل اصل مقاله: 93 |