تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,117,008 |
تعداد دریافت فایل اصل مقاله | 97,221,835 |
بهره برداری تلفیقی از منابع آب سطحی و زیرزمینی در شرایط تغییر اقلیم | ||
تحقیقات آب و خاک ایران | ||
دوره 55، شماره 7، مهر 1403، صفحه 1129-1149 اصل مقاله (3.17 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.370273.669630 | ||
نویسندگان | ||
علی ترابی1؛ فریبرز یوسفوند* 2؛ سعید شعبانلو3؛ احمد رجبی2؛ بهروز یعقوبی2 | ||
1دانشجوی دکتری، گروه مهندسی آب، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران | ||
2گروه مهندسی آب، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه، ایران | ||
3دانشیار گروه مهندسی آب، واحد کرمانشاه، دانشگاه آزاد اسلامی، کرمانشاه،ایران | ||
چکیده | ||
هدف اصلی این پژوهش، شبیهسازی برهمکنش آب سطحی و زیرزمینی با استفاده از ایجاد اتصال بین مدلهای آب سطحی و زیرزمینی در دشت لور در شرایط تغییراقلیم است. در این راستا اثرات تغییراقلیم بر منابع آب سطحی و زیرزمینی بر اساس گزارش ششم هیات بینالدول با استفاده از یک مدل تلفیقی متصل شده WEAP-MODFLOW مورد بررسی قرار گرفت. تغییرات تراز آبخوان و مقدار افت سطح آب زیرزمینی تحت سناریوی مرجع با فرض ادامه وضع موجود و سناریوهای تغییراقلیم مورد ارزیابی قرار گرفت و میزان نوسانات آن در کل دشت برای دوره 27 ساله 2050-2023 (سپتامبر 2050) در تمامی سناریوهای تغییراقلیم بر اساس یک مدل ترکیبی متشکل از مدلهای مختلف پیشبینی شد. نتایج نشان داد میانگین افت تراز آب زیرزمینی در پایان دوره 27 ساله 2050-2023 در صورت ادامه وضع موجود (سناریوی مشاهداتی) حدود 11 متر خواهد بود. بیشترین میزان افت سطح آب زیرزمینی در این سناریو 7/38 متر در بخشی از نواحی مرکزی و جنوب غرب دشت خواهد بود. در صورت استفاده از پارامترهای اقلیمی پیشبینی شده توسط مدل ترکیبی در مدل متصل شده آب سطحی و زیرزمینی، میانگین افت تراز آب زیرزمینی در سناریوهای SSP1-2.6، SSP2-4.5 ، SSP3-7.0و SSP4-8.5 به ترتیب برابر با 8/9، 10، 18/10 و 83/10 متر خواهد بود. بیشترین مقدار افت در این سناریوها به ترتیب برابر با 5/34، 2/35، 5/35 و 2/38 متر خواهد بود. | ||
کلیدواژهها | ||
تغییراقلیم؛ بهرهبرداری تلفیقی؛ برهم کنش آبهای سطحی و زیرزمینی؛ MODFLOW؛ WEAP | ||
عنوان مقاله [English] | ||
Combined operation of surface and groundwater resources in the conditions of climate change | ||
نویسندگان [English] | ||
ali torabi1؛ fariborz yosefvand2؛ saeid shabanlou3؛ ahmad rajabi2؛ Behrouz Yaghoubi2 | ||
1Ph.D. Candidate, Department of Water Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran | ||
2Department of Water Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran | ||
3Department of Water Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran. | ||
چکیده [English] | ||
The main goal of this research is to simulate the interaction of surface water and groundwater by creating a connection between surface water and groundwater models in the Lor plain under climate change conditions. In this regard, the effects of climate change on surface water and groundwater sources were investigated based on the sixth report of the inter-state commission using a WEAP-MODFLOW coupled integrated model. The changes in the water level of the aquifer and the amount of the dropdown in the groundwater level were evaluated under the reference scenario assuming the continuation of the current situation and climate change scenarios, and the number of fluctuations in the entire plain for the 27-year period of 2050-2023(September 2050) in all climate change scenarios based on a model. A hybrid model, composed of different models, was predicted. The results showed that the average dropdown in the groundwater level at the end of 27-year period of 2023-2050 will be about 11 meters if the current situation (observational scenario) continues. In this scenario, the maximum dropdown in the groundwater level will be 38.7 meters in a part of the central and southwestern areas of the plain. If the climatic parameters predicted by the hybrid model are used in the coupled model of surface water and groundwater, the average dropdown in the groundwater level in the scenarios SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP4-8.5 will be 9.8, 10, 10.18 and 10.83 meters, respectively. The maximum dropdown in these scenarios will be 34.5, 35.2, 35.5 and 38.2 meters, respectively. | ||
کلیدواژهها [English] | ||
Climate change, integrated operation, surface and underground water interaction, MODFLOW, WEAP | ||
مراجع | ||
Amiri, S., Rajabi, A., Shabanlou, S., Yosefvand, F. & izadbakhsh, MA. (2023). Prediction of groundwater level variations using deep learning methods and GMS numerical model. Earth Science Informatic. https://doi.org/10.1007/s12145-023-01052-1 Azizi, E., Yosefvand, F., Yaghoubi, B., Izadbakhsh, M.A. & Shabanlou, S. (2023). Modelling and prediction of groundwater level using wavelet transform and machine learning methods: A case study for the Sahneh Plain, Iran. Irrigation and Drainage. 72(3), 747–762. Azizi, K., Azari, A. & Farhadi Bansouleh, B. (2023). Simulation and determination of hydrodynamic coefficients and aquifer balance with Modflow mathematical model (Case study: Kermanshah Plain). Advanced Technologies in Water Efficiency. 2(4), 68-87. Azizpour, A., Izadbakhsh, M.A., Shabanlou, S., Yosefvand, F. & Rajabi, A. (2021). Estimation of water level fluctuations in groundwater through a hybrid learning machine, Groundwater for Sustainable Development, 15, 100687. Azizpour, A., Izadbakhsh, MA., Shabanlou, S., Yosefvand, F. & Rajabi, A. (2022). Simulation of time-series groundwater parameters using a hybrid metaheuristic neuro-fuzzy model. Environment Science Pollution Research, 29, 28414–28430. Bauer, P., Gumbricht, Th. & Kinzelbach, W. (2006). A regional coupled surface water/ groundwater model of the Okavango Delta, Botswana. Water Resources Research, 42, 1-15. Chang, L.C., Ho, C.C., Yeh, M.S. & Yang, C.C. (2010). An Integrating approach for conjunctive-use planning of surface and subsurface water system. Water Resource Management, 25, 59–78. Costa, D., Zhang, H. & Levison, J. (2021). Impacts of climate change on groundwater in the Great Lakes Basin: A review. Great Lakes Research, 47(6), 1613-1625. Enayatifar, R., Yousefi, M., Abdullah, A.H. & Darus, A.N. (2013). MOICA: A novel multi-objective approach based on imperialist competitive algorithm. Applied Mathematics and Computation. 219(17), 8829–8841. Epting, J., Michel, A., Affolter, A. & Huggenberger, P. (2021). Climate change effects on groundwater recharge and temperatures in Swiss alluvial aquifers. Hydrology X, 11(3), 100071. Erturk, A., Ekdal, A., Gurel, M., Karakaya, N., Guzel, C. & Gonenc, E. (2014). Evaluating the impact of climate change on groundwater resources in a small Mediterranean watershed. Science of the total environment, 499, 437-447. Fallahi, MM., Shabanlou, S., Rajabi, A., Yosefvand, F. & izadbakhsh, MA. (2023). Effects of climate change on groundwater level variations affected by uncertainty (case study: Razan aquifer). Applied Water Science. 13, 143. Gilbert, J.M. & Maxwel, R.M. (2017). Examining regional groundwater–surface water dynamics using an integrated hydrologic model of the San Joaquin River basin. Hydrology and Earth System Sciences, 21, 923–947. Gulacha, M.M. & Mulungu, D.M.M. (2017). Generation of climate change scenarios for precipitation and temperature at local scales using SDSM in Wami-Ruvu River Basin Tanzania. Physics and Chemistry of the Earth, 100, 62-72. Guzman, S.M., Paz, JO., Tagert, M.L.M. & Mercer, A.E. (2019). Evaluation of Seasonally Classified Inputs for the Prediction of Daily Groundwater Levels: NARX Networks Vs Support Vector Machines. Environmental Modeling & Assessment, 24(2), 223-234. Hadded, R., Nouiri, I., Alshihabi, Q., Mabmann, J., Huber, M., Laghouane, A., Yahiaoui, H. & Tarhouni, J. (2013). A Decision Support System to Manage the Groundwater of the Zeuss Koutine Aquifer Using the WEAP-MODFLOW Framework. Water Resource Management, Springer Science. 20 P. Hu, L., Xu, Z. & Huang, W. (2016). Development of a river-groundwater interaction model and its application to a catchment in Northwestern China. Hydrology. 543, 483-500. Kamkar, V., Azari, A. & Fatemi, S.E. (2021). Estimation of Recharge and Flow Exchange between River and Aquifer Based on Coupled Surface Water-Groundwater Model. Iranian Journal of Soil and Water Research. 52(7), 1779-1793. Karamouz, M., Kerachian, R. & Zahraie, B. (2004). Monthly water resources and irrigation planning: case study of conjunctive use of surface and groundwater resources. Irrigation and Drainage Engineering, 130, 391-402. Li, Z., Quan, J., Li, X-Y., Wu, X-C., Wu, H-W., Li, Y-T & Li, G-Y. (2016). Establishing a model of conjunctive regulation of surface water andgroundwater in the arid regions. Agricultural Water Management. 174, 30- 38. Malekzadeh, M., Kardar, S., Saeb, K., Shabanlou, S. & Taghavi, L. (2019a). A novel approach for prediction of monthly ground water level using a hybrid wavelet and non-tuned self-adaptive machine learning model. Water resources management. 33, 1609-1628. Malekzadeh, M., Kardar, S. & Shabanlou, S. (2019b). Simulation of groundwater level using MODFLOW, extreme learning machine and Wavelet-Extreme Learning Machine models. Groundwater for Sustainable Development. 9, 100279. Mazandarani Zadeh, H. & Hoseini, M. (2023). Investigating the effect of agricultural product price forecasting on groundwater level using systems dynamics, in order to simultaneously maintain the welfare of farmers and groundwater resources. Iranian Journal of Soil and Water Research, 53(11), 2565-2582. Mazraeh, A., Bagherifar, M., Shabanlou, S. & Ekhlasmand, R. (2023). A Hybrid Machine Learning Model for Modeling Nitrate Concentration in Water Sources. Water, Air, & Soil Pollution. 234(11), 1-22. Mazraeh, A., Bagherifar, M., Shabanlou, S. & Ekhlasmand, R. (2024). A novel committee-based framework for modeling groundwater level fluctuations: A ombination of mathematical and machine learning models using the weighted multi-model ensemble mean algorithm, Groundwater for Sustainable Development, 24, 101062. Mohammed, KS., Shabanlou, S., Rajabi, A., Yosefvand, F. & izadbakhsh, MA. (2023). Prediction of groundwater level fluctuations using artificial intelligence-based models and GMS. Applied Water Science. 13, 54. Moradi, A., Akhtari, A. & Azari, A. (2023). Prediction of groundwater level fluctuation using methods based on machine learning and numerical model. Applied Research in Water and Wastewater, 10(1), 20-28. Morway, E. D., Niswonger, R. G. & Triana, E. (2016). Toward improved simulation of river operations through integration with a hydrologic model. Environmental Modelling & Software, 82, 255-274. Nadiri, A. A., Naderi, K., Khatibi, R., & Gharekhani, M. (2019). Modelling groundwater level variations by learning from multiple models using fuzzy logic. Hydrological sciences journal, 64(2), 210-226. Nyembo, L. O., Larbi, I., Mwabumba, M., Selemani, J. R., Dotse, S. Q., Limantol, A. M. & Bessah, E. (2022). Impact of climate change on groundwater recharge in the lake Manyara catchment, Tanzania. Scientific African, 15(10), e01072. Poursaeid, M., Mastouri, R., Shabanlou, S. & Najarchi, M. (2020). Estimation of total dissolved solids, electrical conductivity, Salinity and groundwater levels using novel learning machines. Environment Earth Science. 79, 1–25. Poursaeid, M., Mastouri, R., Shabanlou, S. & Najarchi, M. (2021). Modelling qualitative and quantitative parameters of groundwater using a new wavelet conjunction heuristic method: wavelet extreme learning machine versus wavelet neural networks. Water and Environment Journal. 35, 67–83. Rajabi, A. & Shabanlou, S. (2012). Climate index changes in future by using SDSM in Kermanshah, Iran. Environmental Research and Development, 7(1), 37–44. Rajabi, A. & Shabanlou, S. (2013). The Analysis of Uncertainty of Climate Change by Means of SDSM Model Case Study: Kermanshah. World Applied Sciences Journal, 23(10), 1392-1398. Rheinheimer, D. E., Null, S. E. & Lund, J. R. (2014). Optimizing Selective Withdrawal from Reservoirs to Manage Downstream Temperatures with Climate Warming. Water Resources Planning and Management, 141(4), 04014063. Sarwar, A. & Eggers, H. (2006). Development of a conjunctive use model to evaluate alternative management options for surface and groundwater resources. Hydrogeology Journal. 14, 1676–1687. Shrestha, S., Bach, T. V., & Pandey, V. P. (2016). Climate change impacts on groundwater resources in Mekong Delta under representative concentration pathways (RCPs) scenarios. Environmental Science and Policy, 61, 1–13. Singh, A. (2014). Simulation–optimization modeling for conjunctive water use management. Agricultural Water Management, 141, 23–29. Soltani., K. & Azari, A. (2022). Forecasting groundwater anomaly in the future using satellite information and machine learning. Hydrology, 612(2), 128052. Soltani., K. & Azari, A. (2023). Terrestrial water storage anomaly estimating using machine learning techniques and satellite-based data (a case study of Lake Urmia Basin). Irrigation and Drainage, 72 (4). Tennant, D.L. (1976). Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries, 1(4), 6-10. Triana, E., Labadie, J. W., Gates, T. K. & Anderson, C. W. (2010). Neural network approach to stream-aquifer modeling for improved river basin management. Hydrology. 391, 235-247. Yan, D., Werners, S., Ludwig, F. & Qing Huang, H. (2015). Hydrological response to climate change: The Pearl River, China under different RCP scenarios. Hydrology 4, 228-245. Yosefvand, F. & Shabanlou, S. (2020). Forecasting of Groundwater Level Using Ensemble Hybrid Wavelet–Self-adaptive Extreme Learning Machine-Based Models. Natural Resource Research. 29, 3215–3232. Zibaei, M. H., Zibaei, M. & Ardokhani, K. (2013). Evaluation of scenarios of integrated use of surface and groundwater resources in Firoozabad plain of Fars. Agricultural Economics Research, 5(1), 157-181. Zeinali, M., Azari, A. & Heidari, M. M. (2020a). Simulating Unsaturated Zone of Soil for Estimating the Recharge Rate and Flow Exchange Between a River and an Aquifer. Water Resources Management, 34, 425–443. Zeinali, M., Azari, A. & Heidari, M. M. (2020b). Multiobjective Optimization for Water Resource Management in Low-Flow Areas Based on a Coupled Surface Water–Groundwater Model. Water Resource Planning and Management (ASCE), 146(5), 04020020. | ||
آمار تعداد مشاهده مقاله: 94 تعداد دریافت فایل اصل مقاله: 78 |