- Ghosh, A. (2023). Nexus between agriculture and photovoltaics (agrivoltaics, agriphotovoltaics) for sustainable development goal: A review. Solar Energy, 266, 112146. https://doi.org/10.1016/j.solener.2023.112146
- GOETZBERGER, A., & ZASTROW, A. (1982). On the Coexistence of Solar-Energy Conversion and Plant Cultivation. International Journal of Solar Energy, 1(1), 55–69. https://doi.org/10.1080/01425918208909875
- Ketzer, D., Schlyter, P., Weinberger, N., & Rösch, C. (2020). Driving and restraining forces for the implementation of the Agrophotovoltaics system technology – A system dynamics analysis. Journal of Environmental Management, 270, 110864. https://doi.org/10.1016/j.jenvman.2020.110864
- Brohm, R., & Khanh, N. Q. (2018). Dual Use Approaches for Solar Energy and Food Production. (International Experience and Potentials for Vietnam. Green Innovation and Development Centre (GreenID): Hanoi, Vietnam). http://en.greenidvietnam.org.vn/publish-report-dual-use-approaches-for-solar-energy-and-food-production-international-experience-and-potentials-for-vietnam.html
- Mahto, R., Sharma, D., John, R., & Putcha, C. (2021). Agrivoltaics: A Climate-Smart Agriculture Approach for Indian Farmers. Land, 10(11), 1277. https://doi.org/10.3390/land10111277
- Bellini, E. (2021). Japan releases new guidelines for agrivoltaics as installations hit 200 MW. PV Magazine International.
- Bellini, E. (2022). France defines standards for agrivoltaics. PV Magazine International.
- Lytle, W., Meyer, T. K., Tanikella, N. G., Burnham, L., Engel, J., Schelly, C., & Pearce, J. M. (2021). Conceptual Design and Rationale for a New Agrivoltaics Concept: Pasture-Raised Rabbits and Solar Farming. Journal of Cleaner Production, 282, 124476. https://doi.org/10.1016/j.jclepro.2020.124476
- Andrew, A. C., Higgins, C. W., Bionaz, M., Smallman, M. A., & Ates, S. (2021). Pasture production and lamb growth in agrivoltaic system. AIP Conference Proceedings, 060001. https://doi.org/10.1063/5.0055889
- Toledo, C., & Scognamiglio, A. (2021). Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns). Sustainability, 13(12), 6871. https://doi.org/10.3390/su13126871
- Gorjian, S., Bousi, E., Özdemir, Ö. E., Trommsdorff, M., Kumar, N. M., Anand, A., Kant, K., & Chopra, S. S. (2022). Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology. Renewable and Sustainable Energy Reviews, 158, 112126. https://doi.org/10.1016/j.rser.2022.112126
- Bhattacharya, S., Das, S., & Boruah, D. (2023). Design of Ground mounted Solar Photovoltaic System and Analysis of Integrated Agri-voltaic Plant. YMER, 22(2), 1324–1362.
- Pulipaka, S., Winter, T., & Hemetsberger, W. (2024). Solar Power Europe 2024: Agrisolar Best Practice Guidelines India Edition. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://energyforum.in/fileadmin/india/media_elements/publications/20240219_Agrisolar_Best_Practice_Guidelines/Agrisolar_best_practice_guidlines.pdf
- Casares de la Torre, F. J., Varo, M., López-Luque, R., Ramírez-Faz, J., & Fernández-Ahumada, L. M. (2022). Design and analysis of a tracking / backtracking strategy for PV plants with horizontal trackers after their conversion to agrivoltaic plants. Renewable Energy, 187, 537–550. https://doi.org/10.1016/j.renene.2022.01.081
- Sarr, A., Soro, Y. M., Tossa, A. K., & Diop, L. (2023). Agrivoltaic, a Synergistic Co-Location of Agricultural and Energy Production in Perpetual Mutation: A Comprehensive Review. Processes, 11(3), 948. https://doi.org/10.3390/pr11030948
- Chimankare, R. V, Das, S., Kaur, K., & Magare, D. (2022). A review of the growth of flowering plants in a greenhouse under different climatic conditions. YMER, 21(10), 536–557. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://ymerdigital.com/uploads/YMER211083.pdf
- Mamun, M. A. al, Dargusch, P., Wadley, D., Zulkarnain, N. A., & Aziz, A. A. (2022). A review of research on agrivoltaic systems. Renewable and Sustainable Energy Reviews, 161, 112351. https://doi.org/10.1016/j.rser.2022.112351
- Kumpanalaisatit, M., Setthapun, W., Sintuya, H., Pattiya, A., & Jansri, S. N. (2022). Current status of agrivoltaic systems and their benefits to energy, food, environment, economy, and society. Sustainable Production and Consumption, 33, 952–963. https://doi.org/10.1016/j.spc.2022.08.013
- Sekiyama, T., & Nagashima, A. (2019). Solar Sharing for Both Food and Clean Energy Production: Performance of Agrivoltaic Systems for Corn, A Typical Shade-Intolerant Crop. Environments, 6(6), 65. https://doi.org/10.3390/environments6060065
- Dinesh, H., & Pearce, J. M. (2016). The potential of agrivoltaic systems. Renewable and Sustainable Energy Reviews, 54, 299–308. https://doi.org/10.1016/j.rser.2015.10.024
- Moon, H.-W., & Ku, K.-M. (2022). Impact of an Agriphotovoltaic System on Metabolites and the Sensorial Quality of Cabbage (Brassica oleracea var. capitata) and Its High-Temperature-Extracted Juice. Foods, 11(4), 498. https://doi.org/10.3390/foods11040498
- Jiang, S., Tang, D., Zhao, L., Liang, C., Cui, N., Gong, D., Wang, Y., Feng, Y., Hu, X., & Peng, Y. (2022). Effects of different photovoltaic shading levels on kiwifruit growth, yield and water productivity under “agrivoltaic” system in Southwest China. Agricultural Water Management, 269, 107675. https://doi.org/10.1016/j.agwat.2022.107675
- Pal, A., & Das, S. (2015). Analytical Model for Determining the Sun’s Position at All Time Zones. International Journal of Energy Engineering, 5(3), 58–65. doi: 10.5923/j.ijee.20150503.03
- Sudhakar, K., Srivastava, T., Satpathy, G., & Premalatha, M. (2013). Modelling and estimation of photosynthetically active incident radiation based on global irradiance in Indian latitudes. International Journal of Energy and Environmental Engineering, 4(1), 21. https://doi.org/10.1186/2251-6832-4-21
- Das, S. (2022). Status of Agri-voltaic in India and the Opportunities and Challenges. The 50thAAACU Founding Anniversary and 23rd Biennial Conference with International Forum on Agricultural Innovation, Sustainability, Entrepreneurship & Networking (i-FAISEN), 2022, 71–78.
- Weselek, A., Ehmann, A., Zikeli, S., Lewandowski, I., Schindele, S., & Högy, P. (2019). Agrophotovoltaic systems: applications, challenges, and opportunities. A review. Agronomy for Sustainable Development, 39(4), 35. https://doi.org/10.1007/s13593-019-0581-3
- Ott, E. M., Kabus, C. A., Baxter, B. D., Hannon, B., & Celik, I. (2022). Environmental Analysis of Agrivoltaic Systems. In Comprehensive Renewable Energy (pp. 127–139). Elsevier. https://doi.org/10.1016/B978-0-12-819727-1.00012-1
- Neupane Bhandari, S., Schlüter, S., Kuckshinrichs, W., Schlör, H., Adamou, R., & Bhandari, R. (2021). Economic Feasibility of Agrivoltaic Systems in Food-Energy Nexus Context: Modelling and a Case Study in Niger. Agronomy, 11(10), 1906. https://doi.org/10.3390/agronomy11101906
- Marrou, H., Dufour, L., & Wery, J. (2013). How does a shelter of solar panels influence water flows in a soil–crop system? European Journal of Agronomy, 50, 38–51. https://doi.org/10.1016/j.eja.2013.05.004
- Hassanpour Adeh, E., Selker, J. S., & Higgins, C. W. (2018). Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. PLOS ONE, 13(11), e0203256. https://doi.org/10.1371/journal.pone.0203256
- Othman, N. F., Yaacob, M. E., Mat Su, A. S., Jaafar, J. N., Hizam, H., Shahidan, M. F., Jamaluddin, A. H., Chen, G., & Jalaludin, A. (2020). Modeling of Stochastic Temperature and Heat Stress Directly Underneath Agrivoltaic Conditions with Orthosiphon Stamineus Crop Cultivation. Agronomy, 10(10), 1472. https://doi.org/10.3390/agronomy10101472
- Hernandez Velasco, M. (2021). Enabling Year-round Cultivation in the Nordics-Agrivoltaics and Adaptive LED Lighting Control of Daily Light Integral. Agriculture, 11(12), 1255. https://doi.org/10.3390/agriculture11121255
- Pascaris, A. S. (2021). Examining existing policy to inform a comprehensive legal framework for agrivoltaics in the U.S. Energy Policy, 159, 112620. https://doi.org/10.1016/j.enpol.2021.112620
- Jones, G. F., Evans, M. E., & Shapiro, F. R. (2022). Reconsidering beam and diffuse solar fractions for agrivoltaics. Solar Energy, 237, 135–143. https://doi.org/10.1016/j.solener.2022.03.014
- Rahman, A., Sharma, A., Postel, F., Goel, S., Kumar, K., & Tara Laan. (2023). Agrivoltaics in India: Challenges and opportunities for scale up. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.iisd.org/system/files/2023-05/agrivoltaics-in-india.pdf
- Gölz, S., & Larisch, F. (2024). Acceptance of AgriVoltaics - A Multi-Stakeholder Survey for a German AgriVoltaic System in Fruit Farming. AgriVoltaics Conference Proceedings, 1. https://doi.org/10.52825/agripv.v1i.531
- Kumar, A., & Thapar, S. (2017). Addressing land issues for utility scale renewable energy deployment in India. Shakti Foundation. https://shaktifoundation.in/wp-content/ uploads/2018/01/Study-Report-Addressing-Land-Issues-for-Utility-Scale-Renewable- Energy-Deployment-in-India.pdf
- Pearce, J. M. (2022). Agrivoltaics in Ontario Canada: Promise and Policy. Sustainability, 14(5), 3037. https://doi.org/10.3390/su14053037
- Al-Obaidi, A. (2016). Introduction to soil mechanics, Lecture notes. https://alqalam.edu.iq/wp-content/uploads/2023/01/soil-mechanics-Third-Stage.pdf
- Ghayas, H., Radhakrishnan, S. R., Sehgal, V. K., & Singh, S. (2022). Measurement and comparison of photosynthetically active radiation by different methods at Delhi. Theoretical and Applied Climatology, 150(3–4), 1559–1571. https://doi.org/10.1007/s00704-022-04252-9
- Kwartiningsih, E., Ramadhani, A. N., Putri, N. G. A., & Damara, V. C. J. (2021). Chlorophyll Extraction Methods Review and Chlorophyll Stability of Katuk Leaves (Sauropus androgynous). Journal of Physics: Conference Series, 1858(1), 012015. https://doi.org/10.1088/1742-6596/1858/1/012015
- Ministry of New and Renewable Energy Report 2021-22. (2022). https://mnre.gov.in/solar/current-status
- Chamara, R., & Beneragama, C. (2020). Agrivoltaic systems and its potential to optimize agricultural land use for energy production in Sri Lanka: A Review. Journal of Solar Energy Research, 5(2), 417–431. https://doi.org/10.22059/JSER.2020.302720.1154
|