تعداد نشریات | 161 |
تعداد شمارهها | 6,572 |
تعداد مقالات | 71,028 |
تعداد مشاهده مقاله | 125,499,368 |
تعداد دریافت فایل اصل مقاله | 98,761,868 |
اثر انواع مختلف هیومیک و فولویک اسیدها بر آزادسازی منگنز از خاکهای آهکی | ||
تحقیقات آب و خاک ایران | ||
دوره 55، شماره 7، مهر 1403، صفحه 1151-1165 اصل مقاله (1.78 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.377108.669721 | ||
نویسندگان | ||
زهره برزگر1؛ حسن توفیقی* 2؛ ارژنگ فتحی گردلیدانی3؛ کریم شهبازی4؛ احمد حیدری2 | ||
1گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران، رایانامه | ||
2گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران | ||
3دانش آموخته دکتری گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی دانشگاه تهران | ||
4موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران، کرج، ایران | ||
چکیده | ||
یکی از عوامل محدودکننده عملکرد محصولات کشاورزی در خاکهای آهکی مناطق خشک و نیمهخشک کمبود عناصر کممصرف در این خاکها میباشد. این مطالعه به منظور بررسی تأثیر هیومیک اسیدها (HA) و فولویک اسیدهای (FA) تجاری بر آزادسازی منگنز در 15 خاک آهکی انجام شد. نتایج نشان داد که کاربرد هیچ یک از پنج هیومیک اسید مختلف استفادهشده در این مطالعه تأثیر معنیداری (05/0>P ) بر آزادسازی منگنز نداشت، اما اثر فولویک اسیدها در خاکهای مختلف متفاوت بود و غالب آنها منجر به افزایش معنیدار (05/0>P ) آزادسازی منگنز شدند. در 20 درصد از خاکها، سه یا هر پنج نمونه فولویک اسید و در 7/26 درصد از خاکها، دو یا چهار نمونه فولویک اسید باعث افزایش معنیدار منگنز شدند. در یک خاک هیچکدام از فولویک اسیدها در افزایش آزادسازی منگنز مؤثر نبودند. دو نمونه از فولویک اسیدها یعنی FA1 و FA5 در آزادسازی منگنز بسیار مؤثرتر بودند، که نشاندهنده این است که اثربخشی یا توانایی فولویک اسیدهای تجاری یا بازاری در آزادسازی منگنز (بر مبنای وزن برابر) یکسان نیست و بین آنها تفاوت بسیاری وجود دارد. تفاوت تا حدی به دلیل توانایی این مواد هیومیک برای تشکیل کمپلکسهای قوی (چند دندانه) با منگنز یا عمل کردن بهعنوان عامل کیلیتکننده است. همچنین نتایج نشان میدهد که اثربخشی به ویژگیهای خاک بستگی دارد که به قدرت اتصال منگنز با گروههای عاملی سطحی خاکها و حلالیت کانیهای منگنز در خاک مربوط میشود. | ||
کلیدواژهها | ||
هیومیک اسید؛ فولویک اسید؛ منگنز؛ خاکهای آهکی | ||
عنوان مقاله [English] | ||
Effect of different kinds of Humic and Fulvic Acids on the release of Manganese from calcareous soils | ||
نویسندگان [English] | ||
Zohreh Barzgar1؛ Hasan Towfighi2؛ Arzhang Fathi Gerdelidani3؛ Karim Shahbazi4؛ Ahmad Heidari2 | ||
1Department of Soil Science, Faculty of Agriculture, University of Tehran, Karaj, Iran | ||
2Department of Soil Science, Faculty of Agriculture, University of Tehran, Karaj, Iran | ||
3Ph.D Graduate, Department of Soil Science and Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Iran | ||
4Soil and Water Research Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran | ||
چکیده [English] | ||
One of the limiting factors in crop yield in calcareous soils of arid and semi-arid regions is the deficiency of micronutrients in these soils. This study was conducted to examine the effects of various commercial humic acids (HAs) and fulvic acids (FAs) on the release of manganese (Mn) in 15 calcareous soils. The results indicated that the application of all five different HAs used in this study had no significant effect (P<0.05) on the release of Mn, but the effects of FAs varied in different soils, the majority of them resulted in a significant increase (P<0.05) in Mn release. In 20% of the soils, either three or all five FAs, and in 26.7 % of the soils, either two or four of the FAs resulted in a significant increase in Mn release. In one soil, none of the FAs were effective in increasing Mn release. Two FA samples, FA1 and FA5, were much more efficient in releasing Mn, indicating that the effectiveness or ability of the marketed or commercial FAs to release Mn, on an equal weight basis, is not the same and varies greatly among them. The difference was, to some extent, due to the ability of these humic substances to form strong (multidentate) complexes with Mn or act as a chelating agent. The results also indicated that effectiveness was dependent on soil characteristics, which were related to the binding strength of Mn with surface functional groups of soils and the solubility of Mn minerals in the soil. | ||
کلیدواژهها [English] | ||
Calcareous soils, Fulvic acid, Humic acid, Manganese | ||
مراجع | ||
Ampong, K., Thilakaranthna, M. S., & Gorim, L. Y. (2022). Understanding the role of humic acids on crop performance and soil health. Frontiers in Agronomy, 4, 848621. https://doi.org/10.3389/fagro.2022.848621 Capasso, S., Chianese, S., Musmarra, D., & Iovino, P. (2020). Macromolecular structure of a commercial humic acid sample. Environments, 7(4), 32. https://doi.org/10.3390/environments7040032 Chen, H., Koopal, L. K., Xiong, J., Avena, M., & Tan, W. (2017). Mechanisms of soil humic acid adsorption onto montmorillonite and kaolinite. Journal of Colloid and Interface Science, 504, 457-467. https://doi.org/10.1016/j.jcis.2017.05.078 Chen, Y., Senesi, N., & Schnitzer, M. (1978). Chemical and physical characteristics of humic and fulvic acids extracted from soils of the Mediterranean region. Geoderma, 20(2), 87-104. https://doi.org/10.1016/0016-7061(78)90037-X Dane, J. H., & Topp, C. G. (Eds.). (2020). Methods of soil analysis, Part 4: Physical methods (Vol. 20). John Wiley & Sons. Davey, M. P., Berg, B., Emmett, B. A., & Rowland, P. (2007). Decomposition of oak leaf litter is related to initial litter Mn concentrations. Botany, 85(1), 16-24. https://doi.org/10.1139/b06-150 de Castro, T. A. V. T., Berbara, R. L. L., Tavares, O. C. H., da Graca Mello, D. F., Pereira, E. G., de Souza, C. D. C. B., ... & García, A. C. (2021). Humic acids induce a eustress state via photosynthesis and nitrogen metabolism leading to a root growth improvement in rice plants. Plant Physiology and Biochemistry, 162, 171-184. https://doi.org/10.1016/j.plaphy.2021.02.043 Donisa, C., Mocanu, R., & Steinnes, E. (2003). Distribution of some major and minor elements between fulvic and humic acid fractions in natural soils. Geoderma, 111(1-2), 75-84. https://doi.org/10.1016/S0016-7061(02)00254-9 Elgala, A. M., El‐Damaty, A. H., & Abdel‐Latif, I. (1976). Comparative ability of natural humus materials and synthetic chelates in extracting Fe, Mn, Zn, and Ca from soils. Zeitschrift für Pflanzenernährung und Bodenkunde, 139(3), 301-307. https://doi.org/10.1002/jpln.19761390305 Eshwar, M., Srilatha, M., Rekha, K. B., & Sharma, S. H. K. (2017). Complexation behavior of humic and fulvic acids with metal ions and their assessment by stability constants. International Journal of Pure & Applied Bioscience, 5(6), 899-907. Gan, D., Kotob, S. I., & Walia, D. S. (2007). EVALUATION OF A SPECTROPHOTOMETRIC METHOD FOR PRACTICAL AND COST EFFECTIVE QUANTIFICATION OF FULVIC ACID. Annals of Environmental Science. Güngör, E. B. Ö., & Bekbölet, M. (2010). Zinc release by humic and fulvic acid as influenced by pH, complexation and DOC sorption. Geoderma, 159(1-2), 131-138. https://doi.org/10.1016/j.geoderma.2010.07.004 Gupta, U. C., Kening, W. U., & Liang, S. (2008). Micronutrients in soils, crops, and livestock. Earth Science Frontiers, 15(5), 110-125. https://doi.org/10.1016/S1872-5791(09)60003-8 Harmsen, K., & Vlek, P. L. G. (1985). The chemistry of micronutrients in soil. In Micronutrients in tropical food crop production (pp. 1-42). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-009-5055-9_1 Hartz, T. K. (2007). Evaluation of humic substances used in commercial fertilizer formulation. Final Report, Frep Project, 07-0174. Janoš, P., Vávrová, J., Herzogová, L., & Pilařová, V. (2010). Effects of inorganic and organic amendments on the mobility (leachability) of heavy metals in contaminated soil: a sequential extraction study. Geoderma, 159(3-4), 335-341. https://doi.org/10.1016/j.geoderma.2010.08.009 Keiluweit, M., Nico, P., Harmon, M. E., Mao, J., Pett-Ridge, J., & Kleber, M. (2015). Long-term litter decomposition controlled by manganese redox cycling. Proceedings of the National Academy of Sciences, 112(38), E5253-E5260. https://doi.org/10.1073/pnas.1508945112 Khattak, R. A., & Page, A. L. (2017). Mechanism of manganese adsorption on soil constituents. In Biogeochemistry of trace metals (pp. 395-412). CRC Press. Khoshru, B., Mitra, D., Nosratabad, A. F., Reyhanitabar, A., Mandal, L., Farda, B., ... & Mohapatra, P. K. D. (2023). Enhancing manganese availability for plants through microbial potential: A sustainable approach for improving soil health and food security. Bacteria, 2(3), 129-141. https://doi.org/10.3390/bacteria2030010 Kumar, D., Patel, K. P., Ramani, V. P., Shukla, A. K., & Meena, R. S. (2020). Management of micronutrients in soil for the nutritional security. Nutrient Dynamics for Sustainable Crop Production, 103-134. https://doi.org/10.1007/978-981-13-8660-2_4 Lamar, R. T., & Monda, H. (2022). Quantification of Humic and Fulvic Acids in Humate Ores, DOC, Humified Materials and Humic Substance-Containing Commercial Products. JoVE (Journal of Visualized Experiments), (181), e61233. https://doi.org/10.3791/61233 Li, K., Shahab, A., Li, J., Huang, H., Sun, X., You, S., ... & Xiao, H. (2023). Compost-derived humic and fulvic acid coupling with Shewanella oneidensis MR-1 for the bioreduction of Cr (VI). Journal of Environmental Management, 345, 118596. https://doi.org/10.1016/j.jenvman.2023.118596 Li, H., Santos, F., Butler, K., & Herndon, E. (2021). A critical review on the multiple roles of manganese in stabilizing and destabilizing soil organic matter. Environmental science & technology, 55(18), 12136-12152. https://doi.org/10.1021/acs.est.1c00299 Mohiuddin, M., Irshad, M., Sher, S., Hayat, F., Ashraf, A., Masood, S., ... & Waseem, M. (2022). Relationship of selected soil properties with the micronutrients in salt-affected soils. Land, 11(6), 845. https://doi.org/10.3390/land11060845 Muscolo, A., Sidari, M., & Nardi, S. (2013). Humic substance: relationship between structure and activity. Deeper information suggests univocal findings. Journal of Geochemical Exploration, 129, 57-63. https://doi.org/10.1016/j.gexplo.2012.10.012 Nardi, S., Schiavon, M., & Francioso, O. (2021). Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules, 26(8), 2256. https://doi.org/10.3390/molecules26082256 Paulus, E. L., & Vitousek, P. M. (2024). Manganese and soil organic carbon stability on a Hawaiian grassland rainfall gradient. Soil Biology and Biochemistry, 109418. https://doi.org/10.1016/j.soilbio.2024.109418 Rashid, M. A., & King, L. H. (1970). Major oxygen-containing functional groups present in humic and fulvic acid fractions isolated from contrasting marine environments. Geochimica et Cosmochimica Acta, 34(2), 193-201. https://doi.org/10.1016/0016-7037(70)90006-2 Rodríguez, F. J., & Núñez, L. A. (2011). Characterization of aquatic humic substances. Water and Environment Journal, 25(2), 163-170. https://doi.org/10.1111/j.1747-6593.2009.00205.x Rutkowska, B., Szulc, W., Sosulski, T., & Stępień, W. (2014). Soil micronutrient availability to crops affected by long-term inorganic and organic fertilizer applications. Sarlaki, E., Paghaleh, A. S., Kianmehr, M. H., & Vakilian, K. A. (2020). Chemical, spectral and morphological characterization of humic acids extracted and membrane purified from lignite. Chem. Chem. Technol, 14(3), 353-361. https://doi.org/10.23939/chcht14.03.353 Senesi, N., D'Orazio, V., & Ricca, G. (2003). Humic acids in the first generation of EUROSOILS. Geoderma, 116(3-4), 325-344. https://doi.org/10.1016/S0016-7061(03)00107-1 Shakeri, S., & Saffari, M. (2020). The status of chemical forms of iron and manganese in various orders of calcareous soils and their relationship with some physicochemical and mineralogical properties. Communications in Soil Science and Plant Analysis, 51(15), 2054-2068. https://doi.org/10.1080/00103624.2020.1820026 Shuzhuan, W. A. N. G., Xiaorong, W. E. I., & Mingde, H. A. O. (2016). Dynamics and availability of different pools of manganese in semiarid soils as affected by cropping system and fertilization. Pedosphere, 26(3), 351-361. https://doi.org/10.1016/S1002-0160(15)60048-0 Singh, M., Sarkar, B., Hussain, S., Ok, Y. S., Bolan, N. S., & Churchman, G. J. (2017). Influence of physico-chemical properties of soil clay fractions on the retention of dissolved organic carbon. Environmental geochemistry and health, 39, 1335-1350. Sparks, D. L. (1996). Methods of soil analysis, part 3. Published by the chemical methods. Soil Science Society of America. Inc, Madison. Sparks, D. L. (1996). Methods of soil analysis, part 3. Published by the chemical methods. Soil Science Society of America. Inc, Madison. Sparks, D. L., Singh, B., & Siebecker, M. G. (2022). Environmental soil chemistry. Elsevier. Sposito, G. (2016). The chemistry of soils. Oxford university press. Stevenson, F. J. (1991). Organic matter‐micronutrient reactions in soil. Micronutrients in agriculture, 4, 145-186. https://doi.org/10.2136/sssabookser4.2ed.c6 Swift, R. S. (1996). Organic matter characterization. Methods of soil analysis: Part 3 chemical methods, 5, 1011-1069. https://doi.org/10.2136/sssabookser5.3.c35 Türkmen, C., & Sungur, A. (2014). Influence of humic acid on availability of zn, Cu, mn, fe in soils. Asian Journal of Chemistry, 26(13), 3977. Ussiri, D. A., & Johnson, C. E. (2003). Characterization of organic matter in a northern hardwood forest soil by 13C NMR spectroscopy and chemical methods. Geoderma, 111(1-2), 123-149. https://doi.org/10.1016/S0016-7061(02)00257-4 Verrillo, M., Salzano, M., Savy, D., Di Meo, V., Valentini, M., Cozzolino, V., & Piccolo, A. (2022). Antibacterial and antioxidant properties of humic substances from composted agricultural biomasses. Chemical and Biological Technologies in Agriculture, 9(1), 28. https://doi.org/10.1186/s40538-022-00291-6 Wandansari, N. R., Suntari, R., & Kurniawan, S. (2023). The role of humic acid from various composts in improving degraded soil fertility and maize yield. Journal of Degraded & Mining Lands Management, 10(2). https://doi.org/10.15243/jdmlm.2023.102.4245 Wang, M., Zhao, Z., Li, Y., Liang, S., Meng, Y., Ren, T., ... & Zhang, Y. (2022). Control the greenhouse gas emission via mediating the dissimilatory iron reduction: Fulvic acid inhibit secondary mineralization of ferrihydrite. Water Research, 218, 118501. https://doi.org/10.1016/j.watres.2022.118501 Wang, X., Wang, Q., Zhang, D., Liu, J., Fang, W., Li, Y., ... & Yan, D. (2024). Fumigation alters the manganese-oxidizing microbial communities to enhance soil manganese availability and increase tomato yield. Science of The Total Environment, 170882. https://doi.org/10.1016/j.scitotenv.2024.170882 Welch, R. M., & Graham, R. D. (2005). Agriculture: the real nexus for enhancing bioavailable micronutrients in food crops. Journal of Trace Elements in Medicine and Biology, 18(4), 299-307. https://doi.org/10.1016/j.jtemb.2005.03.001 Whalen, E. D., Smith, R. G., Grandy, A. S., & Frey, S. D. (2018). Manganese limitation as a mechanism for reduced decomposition in soils under atmospheric nitrogen deposition. Soil Biology and Biochemistry, 127, 252-263. https://doi.org/10.1016/j.soilbio.2018.09.025 Wu, J., West, L. J., & Stewart, D. I. (2002). Effect of humic substances on Cu (II) solubility in kaolin-sand soil. Journal of Hazardous Materials, 94(3), 223-238. https://doi.org/10.1016/S0304-3894(02)00082-1 Zanin, L., Tomasi, N., Cesco, S., Varanini, Z., & Pinton, R. (2019). Humic substances contribute to plant iron nutrition acting as chelators and biostimulants. Frontiers in Plant Science, 10, 452874. https://doi.org/10.3389/fpls.2019.00675 | ||
آمار تعداد مشاهده مقاله: 136 تعداد دریافت فایل اصل مقاله: 86 |