
تعداد نشریات | 163 |
تعداد شمارهها | 6,761 |
تعداد مقالات | 72,826 |
تعداد مشاهده مقاله | 131,643,266 |
تعداد دریافت فایل اصل مقاله | 103,419,706 |
Nano-curcumin Attenuates Brain Oxidative Stress and Cognitive Deficit in Ketamine-induced Anesthesia in Adolescent Rats | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 11، دوره 19، شماره 3، مهر 2025، صفحه 515-526 اصل مقاله (1.28 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.19.3.1005545 | ||
نویسندگان | ||
Reza Tahmaseby1؛ Abbas Raisi* 2؛ Majid Taati3؛ Soroush Afshar Ghahremani4 | ||
1Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran. | ||
2Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran. | ||
3Department of Basic Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran. | ||
4Department of Health and Food Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. | ||
چکیده | ||
Background: Anesthetics play a crucial role in medical procedures; however, some may have neurotoxic effects, particularly through oxidative stress mechanisms. Ketamine, a widely used anesthetic, has been associated with neurotoxicity characterized by an imbalance in reactive oxygen species (ROS) production and antioxidant defenses. Objectives: This study aimed to investigate the effects of nano-curcumin on ketamine-induced alterations in the hippocampal antioxidant components and cognitive function in adolescent rats. Methods: Sixty male Wistar rats were used for two experiments. experiment 1 assessed the biochemical effects of nano-curcumin on ketamine anesthesia, while experiment 2 evaluated its impact on spatial learning and memory. At the end of the experiment, oxidative stress parameters, such as malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT), were measured. The Morris water maze (MWM) test was used to assess cognitive function. Results: Biochemical assays revealed that ketamine anesthesia reduced antioxidant enzyme activity and total antioxidant capacity (TAC) in the hippocampus (HP) while increasing lipid peroxidation. Nano-curcumin treatment alleviated these effects, restoring antioxidant enzyme activity by significantly increasing SOD and CAT levels and reducing lipid peroxidation (P≤0.05). In the MWM test, ketamine anesthesia impaired spatial learning and memory, which was attenuated by nano-curcumin pretreatment. Conclusion: Nano-curcumin effectively prevented ketamine-induced neurotoxicity by restoring the antioxidant balance and ameliorating cognitive deficits. These results highlight the potential therapeutic utility of nano-curcumin in mitigating anesthesia-induced neurotoxicity and emphasize the importance of oxidative stress in anesthesia-related neurological complications. | ||
کلیدواژهها | ||
Anesthesia؛ Brain؛ Ketamine؛ Nano-curcumin؛ Oxidative stress | ||
اصل مقاله | ||
Introduction References Alam, A., Suen, K. C., Hana, Z., Sanders, R. D., Maze, M., & Ma, D. (2017). Neuroprotection and neurotoxicity in the developing brain: An update on the effects of dexmedetomidine and xenon. Neurotoxicology and Teratology, 60, 102–116.[DOI:10.1016/j.ntt.20101.001] [PMID] AKundović, S. A., Rašić, D., Popović, L., Peraica, M., & Črnjar, K. (2020). Oxidative stress under general intravenous and inhalation anaesthesia. Arhiv Za Higijenu Rada i Toksikologiju, 71(3), 169–177. [DOI:10.2478/aiht-2020-71-3437] [PMID] Annetta, M. G., Iemma, D., Garisto, C., Tafani, C., & Proietti, R. (2005). Ketamine: New indications for an old drug. Current Drug Targets, 6(7), 789–794. [DOI:10.2174/13894500577457453] [PMID] Ashjazadeh, M. A., Jahandideh, A., Abedi, G., Akbarzadeh, A., & Hesaraki, S. (2019). Histopathology and Histomorphological Study of Wound Healing Using Clove Extract Nanofibers (Eugenol) Compared to Zinc Oxide Nanofibers on the Skin of Rats. Archives of Razi Institute, 74(3), 267-277.[DOI:10.22092/ARI.2018.120170.1184] Assi, A. A., Farrag, M. M. Y., Badary, D. M., Allam, E. A. H., & Nicola, M. A. (2023). Protective effects of curcumin and Ginkgo biloba extract combination on a new model of Alzheimer's dise Inflammopharmacology, 31(3), 1449–1464. [DOI:10.1007/s10787-023-01164-6] [PMID] Banji, D., Banji, O. J. F., & Srinivas, K. (2021). Neuroprotective effect of turmeric extract in combination with its essential oil and enhanced brain bioavailability in an animal model. BioMed Research International, 2021, [DOI:10.1155/2021/6645720] [PMID] Barfourooshi, H. J., Esmaeilkhanian, S., Davachi, N. D., Asadzadeh, N., & Masoudi, R. (2023). Effect of Mito-TEMPO on Post-thawed Semen Quality in Goats. Iranian Journal of Veterinary Medicine, 17(4), 393-400. [DOI:10.32598/ijvm.17.4.1005346] Bisson, J. F., Nejdi, A., Rozan, P., Hidalgo, S., Lalonde, R., & Messaoudi, M. (2008). Effects of long-term administration of a cocoa polyphenolic extract (Acticoa powder) on cognitive performances in aged rats. The British Journal of Nutrition, 100(1), 94–101. [DOI:10.1017/S0007114507886375] [PMID] Brocardo, P. S., Budni, J., Pavesi, E., Franco, J. L., Uliano-Silva, M., & Trevisan, R., et al. (2010). Folic acid administration prevents ouabain-induced hyperlocomotion and alterations in oxidative stress markers in the rat brain. Bipolar Disorders, 12(4), 414–424. [DOI:10.1111/j.1399-5618.2010.00827.x] [PMID] Carmo de Carvalho e Martins, M. d., da Silva Santos Oliveira, A. S., da Silva, L. A. A., Primo, M. G. S., & de Carvalho Lira, V. B. (2022). Biological Indicators of Oxidative Stress [Malondialdehyde, Catalase, Glutathione Peroxidase, and Superoxide Dismutase] and Their Application in Nutrition. In V.B. Patel & V. R. Preedy (Eds), Biomarkers in Nutrition. Biomarkers in Disease: Methods, Discoveries and Applications. Cham: Springer. [Link] Carrillo, M. C., Kanai, S., Nokubo, M., & Kitani, K. (1991). (-) deprenyl induces activities of both superoxide dismutase and catalase but not of glutathione peroxidase in the striatum of young male rats. Life Sciences, 48(6), 517–521.[DOI:10.1016/0024-3205(91)90466-o] [PMID] Cecerska-Heryć, E., Polikowska, A., Serwin, N., Roszak, M., Grygorcewicz, B., & Heryć, R., et al. (2022). Importance of oxidative stress in the pathogenesis, diagnosis, and monitoring of patients with neuropsychiatric disorders, a review. Neurochemistry International, 153, [DOI:10.1016/j.neuint.2021.105269] [PMID] Chukwu, O. O., Emelike, C. U., Konyefom, N. G., Ibekailo, S. N., Ekakitie, O. O., & Ghasi, S. et al. (2023). Histological studies of the heart and biochemical changes due to the perinatal consumption of Hibiscus sabdariffa (flavonoid-rich extract) to feed-restricted rats on offspring. Iranian Journal of Veterinary Medicine, 17(1), 37-46. [DOI:10.22059/ijvm.17.1.1005272] Clausen, N. G., Hansen, T. G., & Disma, N. (2019). Anesthesia Neurotoxicity in the Developing Brain: Basic Studies Relevant for Neonatal or Perinatal Medicine. Clinics in Perinatology, 46(4), 647–656. [DOI:10.1016/j.clp.2019.08.002] [PMID] Cobley, J. N., Fiorello, M. L., & Bailey, D. M. (2018). 13 reasons why the brain is susceptible to oxidative stress. Redox Biology, 15, 490–503. [DOI:10.1016/j.redox.2018.01.008] [PMID] Costantini, D. (2019). Understanding diversity in oxidative status and oxidative stress: the opportunities and challenges ahead. The Journal of Experimental Biology, 222(Pt 13), jeb194688. [DOI:10.1242/jeb.194688] [PMID] Da Silva, F. C. C., De Oliveira Cito, M. D. C., Da Silva, M. I. G., Moura, B. A., & De Aquino Neto, M. R., et al. (2010). Behavioral alterations and pro-oxidant effect of a single ketamine administration to mice. Brain Research Bulletin, 83(1-2), 9–15.[DOI:10.1016/j.brainresbull.2010.05.011] [PMID] De Oliveira, L., Spiazzi, C. M., Bortolin, T., Canever, L., Petronilho, F., & Mina, F. G., et al. (2009). Different sub-anesthetic doses of ketamine increase oxidative stress in the brain of Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33(6), 1003–1008. [DOI:10.1016/j.pnpbp.2009.05.010] [PMID] Eichenbaum, H. (2001). The hippocampus and declarative memory: Cognitive mechanisms and neural codes. Behavioural Brain Research, 127(1-2), 199–207. [DOI:10.1016/s0166-4328(01)00365-5] [PMID] Farshchi, A., Ghiasi, G., Farshchi, S., & Malek Khatabi, P. (2010). Effects of boswellia papyrifera gum extract on learning and memory in mice and rats. Iranian Journal of Basic Medical Sciences, 13(2), 9-14. [Link] Frick, K. M., Stillner, E. T., & Berger-Sweeney, J. (2000). Mice are not little rats: species differences in a one-day water maze task. Neuroreport, 11(16), 3461–3465. [DOI:10.1097/00001756-200011090-00013] [PMID] Gamoh, S., Hashimoto, M., Hossain, S., & Masumura, S. (2001). Chronic administration of docosahexaenoic acid improves the performance of radial arm maze task in aged rats. Clinical and Experimental Pharmacology & Physiology, 28(4), 266–270.[DOI:10.1046/j.1440-1681.2001.03437.x] [PMID] Gascoigne, D. A., Minhaj, M. M., & Aksenov, D. P. (2022). Neonatal Anesthesia and Oxidative Stress. Antioxidants (Basel, Switzerland), 11(4), 787. [DOI:10.3390/antiox11040787] [PMID] Gazal, M., Valente, M. R., Acosta, B. A., Kaufmann, F. N., Braganhol, E., & Lencina, C. L., et al. (2014). Neuroprotective and antioxidant effects of curcumin in a ketamine-induced model of mania in rats. European Journal of Pharmacology, 724, 132-139. [DOI:10.1016/j.ejphar.2013.12.028] [PMID] Gholipour-Shoshod, A., Rahimi, S., Zahraei Salehi, T., Karimi Torshizi, M. A., Behnamifar, A., & Ebrahimi, T., et al. (2023). Evaluating the competitiveness of medicinal plants with antibiotics to control salmonella enterica serovar typhimurium in broiler chickens. Iranian Journal of Veterinary Medicine, 17(2), 155-166. [DOI:10.32598/IJVM.17.2.1005233] Godse, S., Zhou, L., Sakshi, S., Singla, B., Singh, U. P., & Kumar, S. (2023). Nanocarrier-mediated curcumin delivery: An adjuvant strategy for CNS disease treatment. Experimental Biology and Medicine (Maywood, N.J.), 248(22), 2151–2166. [DOI:10.1177/15353702231211863] [PMID] Grimm, A., & Eckert, A. (2017). Brain aging and neurodegeneration: from a mitochondrial point of view. Journal of Neurochemistry, 143(4), 418–431. [DOI:10.1111/jnc.14037] [PMID] Hajizadeh, H., Abedi, G., Asghari, A., & Hesaraki, S. (2018). Comparative evaluation of the biochemical effects of ketamine plus ketoprofen and midazolam in the premedication of pigeons. Archives of Razi Institute, 73(3), 223-227. [DOI:10.22092/ARI.2017.109066.1099] Halliwell, B. & Gutteridge, J. M. (2015). Free radicals in biology and medicine. Oxford: Oxford University Press. [DOI:10.1093/acprof:oso/9780198717478.001.0001] Hashimoto, M., Hossain, S., Shimada, T., Sugioka, K., Yamasaki, H., & Fujii, Y., et al. (2002). Docosahexaenoic acid provides protection from impairment of learning ability in Alzheimer's disease model rats. Journal of Neurochemistry, 81(5), 1084–1091.[DOI:10.1046/j.1471-4159.2002.00905.x] [PMID] Hashimoto, M., Tanabe, Y., Fujii, Y., Kikuta, T., Shibata, H., & Shido, O. (2005). Chronic administration of docosahexaenoic acid ameliorates the impairment of spatial cognition learning ability in amyloid beta-infused rats. The Journal of Nutrition, 135(3), 549–555. [DOI:10.1093/jn/135.3.549] [PMID] Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: A review of its effects on human health. Foods (Basel, Switzerland), 6(10), 92. [DOI:10.3390/foods6100092] [PMID] Huang, H. C., Xu, K., & Jiang, Z. F. (2012). Curcumin-mediated neuroprotection against amyloid-β-induced mitochondrial dysfunction involves the inhibition of GSK-3β. Journal of Alzheimer's Disease: JAD, 32(4), 981–996. [DOI:10.3233/JAD-2012-120688] [PMID] Hussain AlDulaimi, L. (2024). Effect of oxidative stress on histological and immunohistochemical changes in Testes of Albino Mice. Iranian Journal of Veterinary Medicine, 18(2), 187-194. [DOI: 10.32598/ijvm.18.2.1005459] Jäger, R., Lowery, R. P., Calvanese, A. V., Joy, J. M., Purpura, M., & Wilson, J. M. (2014). Comparative absorption of curcumin formulations. Nutrition Journal, 13, [DOI:10.1186/1475-2891-13-11] [PMID] Juyal, D. S., Ganga, B., & Arun, K. (2010). Effect of Stevia rebau diana (Bert.) extract on memory and acetylcholinesterase activity in young and aged rats. Journal of Global Pharma Technology, 2, 62-68. [Link] Kaboutari, J., Ghorbani, M., Karimibabaahmadi, B., Javdani, M., & Khosraviyan, P. (2023). Anti-inflammatory evaluation of the novel slow-release curcumin-loaded selenium nanoparticles in the experimental peritonitis. Iranian Journal of Veterinary Medicine, 10. [Link] Kahkhaie, K. R., Mirhosseini, A., Aliabadi, A., Mohammadi, A., Mousavi, M. J., & Haftcheshmeh, S. M., et al. (2019). Curcumin: A modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology, 27(5), 885–900.[DOI:10.1007/s10787-019-00607-3] [PMID] Kandlur, A., Satyamoorthy, K. & Gangadharan, G. (2020). Oxidative stress in cognitive and epigenetic aging: A retrospective glance. Frontiers in Molecular Neuroscience, 13, [DOI:10.3389/fnmol.2020.00041] [PMID] Katalinic, N., Lai, R., Somogyi, A., Mitchell, P. B., Glue, P., & Loo, C. K. (2013). Ketamine as a new treatment for depression: a review of its efficacy and adverse effects. The Australian and New Zealand Journal of Psychiatry, 47(8), 710–727.[DOI:10.1177/0004867413486842] [PMID] Khalili, M., Roghani, M., & Ekhlasi, M. (2009). The effect of aqueous crocus sativus L. extract on intracerebroventricular streptozotocin-induced cognitive deficits in rat: A behavioral analysis. Iranian Journal of Pharmaceutical Research, 8(3), 185-191. [Link] Khayatan, D., Razavi, S. M., Arab, Z. N., Niknejad, A. H., Nouri, K., & Momtaz, S., et al. (2022). Protective effects of curcumin against traumatic brain injury. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 154, [DOI:10.1016/j.biopha.2022.113621] [PMID] Kumar, S., Maheshwari, K. K., & Singh, V. (2009). Effects of Mangifera indica fruit extract on cognitive deficits in mice. Journal of Environmental Biology, 30(4), 563–566. [PMID] Lee, Y. M., Song, B. C., & Yeum, K. J. (2015). Impact of Volatile Anesthetics on Oxidative Stress and Inflammation. BioMed Research International, 2015, [DOI:10.1155/2015/242709] [PMID] Li, Y., Li, X., Zhao, J., Li, L., Wang, Y., & Zhang, Y., et al. (2018). Midazolam attenuates autophagy and apoptosis caused by ketamine by decreasing reactive oxygen species in the hippocampus of fetal rats. Neuroscience, 388, 460–471.[DOI:10.1016/j.neuroscience.2018.03.040] [PMID] Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., & Della-Morte, D., et al. (2018). Oxidative stress, aging, and diseases. Clinical Interventions in Aging, 13, 757–772. [DOI:10.2147/CIA.S158513] [PMID] Liu, F., Patterson, T. A., Sadovova, N., Zhang, X., Liu, S., & Zou, X., et al. (2013). Ketamine-induced neuronal damage and altered N-methyl-D-aspartate receptor function in rat primary forebrain culture. Toxicological Sciences, 131(2), 548–557.[DOI:10.1093/toxsci/kfs296] [PMID] Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193(1), 265–275. [DOI:10.1016/S0021-9258(19)52451-6] [PMID] Mahadik, S. P., Evans, D., & Lal, H. (2001). Oxidative stress and role of antioxidant and omega-3 essential fatty acid supplementation in schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 25(3), 463–493. [DOI:10.1016/s0278-5846(00)00181-0] [PMID] Maiti, P., & Dunbar, G. L. (2018). Use of curcumin, a natural polyphenol for targeting molecular pathways in treating age-related neurodegenerative diseases. International Journal of Molecular Sciences, 19(6), 1637. [DOI:10.3390/ijms19061637] [PMID] Menon, V. P., & Sudheer, A. R. (2007). Antioxidant and anti-inflammatory properties of curcumin. Advances in Experimental Medicine and Biology, 595, 105–125. [DOI:10.1007/978-0-387-46401-5_3] [PMID] Mishra, S., & Palanivelu, K. (2008). The effect of curcumin (turmeric) on Alzheimer's disease: An overview. Annals of Indian Academy of Neurology, 11(1), 13–19. [DOI:10.4103/0972-2327.40220] [PMID] Moballegh Nasery, M., Abadi, B., Poormoghadam, D., Zarrabi, A., Keyhanvar, P., & Khanbabaei, H., et al. (2020). Curcumin delivery mediated by bio-based nanoparticles: A review. Molecules (Basel, Switzerland), 25(3), 689. [DOI:10.3390/molecules25030689] [PMID] Moghaddam, B. (2021). Massachusetts: MIT Press. [Link] Mohammed, E. S., El-Beih, N. M., El-Hussieny, E. A., El-Ahwany, E., Hassan, M., & Zoheiry, M. (2020). Effects of free and nanoparticulate curcumin on chemically induced liver carcinoma in an animal model. Archives of Medical Science: AMS, 17(1), 218–227. [DOI:10.5114/aoms.2020.93739] [PMID] Morris, R., Garrud, P., Rawlins, J. N., & O'Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681–683. [DOI:10.1038/297681a0] [PMID] Ng, F., Berk, M., Dean, O., & Bush, A. I. (2008). Oxidative stress in psychiatric disorders: evidence base and therapeutic implications. The International Journal of Neuropsychopharmacology, 11(6), 851–876. [DOI:10.1017/S1461145707008401] [PMID] Panzarini, E., Mariano, S., Tacconi, S., Carata, E., Tata, A. M., & Dini, L. (2020). Novel therapeutic delivery of nanocurcumin in central nervous system related disorders. Nanomaterials (Basel, Switzerland), 11(1), 2. [DOI:10.3390/nano11010002] [PMID] Papp, G., Witter, M. P., & Treves, A. (2007). The CA3 network as a memory store for spatial representations. Learning & Memory (Cold Spring Harbor, N.Y.), 14(11), 732–744. [DOI:10.1101/lm.687407] [PMID] Peng, Y., Ao, M., Dong, B., Jiang, Y., Yu, L., & Chen, Z., et al. (2021). Anti-Inflammatory effects of curcumin in the inflammatory diseases: status, limitations and countermeasures. Drug Design, Development and Therapy, 15, 4503–4525.[DOI:10.2147/DDDT.S327378] [PMID] Quiroz-Padilla, M. F., Guillazo-Blanch, G., Sanchez, M. Y., Dominguez-Sanchez, M. A., & Gomez, R. M. (2018). Effects of excitotoxic lesion with inhaled anesthetics on nervous system cells of rodents. Current Pharmaceutical Design, 24(1), 4–14. [DOI:10.2174/1381612823666170817125015] [PMID] Rajasekar, N., Dwivedi, S., Tota, S. K., Kamat, P. K., Hanif, K., & Nath, C., et al. (2013). Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice. European Journal of Pharmacology, 715(1-3), 381–394. [DOI:10.1016/j.ejphar.2004.033] [PMID] Renis, M., Calabrese, V., Russo, A., Calderone, A., Barcellona, M. L., & Rizza, V. (1996). Nuclear DNA strand breaks during ethanol-induced oxidative stress in rat brain. FEBS Letters, 390(2), 153–156. [DOI:10.1016/0014-5793(96)00647-3] [PMID] Resae, A., Yousefi, M. H., Naeimi, S. and Mahdavi, A. (2023). Effects of occupational formaldehyde exposure on passive avoidance conditioning and anxiety levels in wistar rats. Iranian Journal of Veterinary Medicine, 17(1), 65-74. [DOI:10.22059/ijv17.1.1005241] Réus, G. Z., Matias, B. I., Maciel, A. L., Abelaira, H. M., Ignácio, Z. M., & de Moura, A. B., et al. (2017). Mechanism of synergistic action on behavior, oxidative stress and inflammation following co-treatment with ketamine and different antidepressant classes. Pharmacological Reports: PR, 69(5), 1094–1102.[DOI:10.1016/j.pharep.2017.04.021] [PMID] Sedky, A. A., & Magdy, Y. (2021). Reduction in TNF alpha and oxidative stress by liraglutide: Impact on ketamine-induced cognitive dysfunction and hyperlocomotion in rats. Life Sciences, 278, [DOI:10.1016/j.lfs.2021.119523] [PMID] Shahsavari, M., Norouzi, P., Kalalianmoghaddam, H., & Teimouri, M. (2023). Effects of kudzu root on oxidative stress and inflammation in streptozotocin-induced diabetic rats. Iranian Journal of Veterinary Medicine, 17(4), 401-408.. [DOI:10.32598/ijvm.17.4.1005281] Singh, A., Kukreti, R., Saso, L., & Kukreti, S. (2019). Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules (Basel, Switzerland), 24(8), 1583. [DOI:10.3390/molecules24081583] [PMID] Stevens, J. L., Feelisch, M., & Martin, D. S. (2019). Perioperative Oxidative Stress: The Unseen Enemy. Anesthesia and Analgesia, 129(6), 1749–1760. [DOI:10.1213/ANE.0000000000004455] [PMID] Taati, M., Alirezaei, M., Moshkatalsadat, M. H., Rasoulian, B., Moghadasi, M., & Sheikhzadeh, F., et al. (2011). Protective effects of Ziziphus jujuba fruit extract against ethanol-induced hippocampal oxidative stress and spatial memory impairment in rats. Journal of Medicinal Plants Research, 5(6), 915-921. [Link] Tamadonfard, E., Hamzeh, G. F. & Hamzeh, G. N. (2010). Effect of curcumin on morphine-induced antinociception in acute corneal pain in rats. International Journal of Veterinary Research, 4(2), 127-131. [DOI: 10.22059/ijvm.2010.21366] Vaiserman, A., Koliada, A., Zayachkivska, A. & Lushchak, O. (2020). Curcumin: A therapeutic potential in ageing-related disorders. PharmaNutrition, 14, [DOI:10.1016/j.phanu.2020.100226] Xu, Y., Ku, B., Cui, L., Li, X., Barish, P. A., & Foster, T. C., et al. (2007). Curcumin reverses impaired hippocampal neurogenesis and increases serotonin receptor 1A mRNA and brain-derived neurotrophic factor expression in chronically stressed rats. Brain Research, 1162, 9–18. [DOI:10.1016/j.brainres.2007.05.071] [PMID] Zhou, L., & Duan, J. (2024). The role of NMDARs in the anesthetic and antidepressant effects of ketamine. CNS Neuroscience & Therapeutics, 30(4), e14464. [DOI:10.1111/cns.14464] [PMID]
| ||
آمار تعداد مشاهده مقاله: 101 تعداد دریافت فایل اصل مقاله: 215 |