
تعداد نشریات | 162 |
تعداد شمارهها | 6,692 |
تعداد مقالات | 72,235 |
تعداد مشاهده مقاله | 129,205,046 |
تعداد دریافت فایل اصل مقاله | 102,033,944 |
Successful Treatment of Feline Infectious Peritonitis Disease (FIP) with Mesenchymal Stem Cells | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 20، دوره 19، شماره 2، تیر 2025، صفحه 397-404 اصل مقاله (1.59 M) | ||
نوع مقاله: Case Report | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.19.2.1005555 | ||
نویسندگان | ||
Samira Mohamadian* 1؛ Pejman Kazerooni1؛ Ali Taheri Mirghaed2؛ Mahsa Kia3؛ Minoo Soltani4؛ Ali Akbaripazouki5؛ Saman Ahani6؛ Pouria Asgari7 | ||
1Department of Internal Medicine, Pouya Pet Clinic, Tehran, Iran. | ||
2Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. | ||
3Department of Stem Cell Research Technical, Treata Caspian Parsian Company, Tehran, Iran. | ||
4Rastegar Reference Laboratory, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. | ||
5Department of Cell and Molecular Biology, Faculty of Biology, University of Tehran, Tehran, Iran. | ||
6Department of Diagnostic Imaging, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran. | ||
7Department of Clinical Science, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran. | ||
چکیده | ||
Feline infectious peritonitis (FIP) caused by feline coronavirus (FCoV) is a common disease that leads to a cytokine storm and causes organ failure, with a high mortality rate in feline patients. This is the first case report on the detailed treatment of three cats with FIPs using allogeneic bone marrow mesenchymal stem cells. We aimed to evaluate the effectiveness of cell therapy in this disease in a shorter period with greater efficiency. Infected cats received five doses of bone marrow stem cells through intravenous infusion. During the treatment period, the subjects were kept in an isolated place and their clinical conditions were evaluated under the supervision of an internal specialist. This treatment resulted in the full recovery of all cats within 21 days. One cat was re-infected two months later after exposure to an infected cat, while two cats remained in remission at the time of writing this report. This case report suggests the effectiveness of using bone marrow mesenchymal stem cell therapy in the treatment of FIPs. | ||
کلیدواژهها | ||
Allogeneic؛ Bone morrow؛ Cytokine storm؛ Mesenchymal؛ Stem cells | ||
اصل مقاله | ||
Case History
We hypothesized that stem cells in the body can simultaneously control the inflammation caused by the virus, prevent its proliferation, and repair the damaged tissues. To the authors’ knowledge, there have been no reports of the successful use of BW-MSCs in the treatment of FIP.
No free fluid was observed in one case (none-effusive), and the finding indicated hepatomegaly (Figure 2).
Addie, D. D., Curran, S., Bellini, F., Crowe, B., Sheehan, E., & Ukrainchuk, L., et al. (2020). Oral Mutian®X stopped faecal feline coronavirus shedding by naturally infected cats. Research in Veterinary Science., 130, 222-229. [DOI:10.1016/j.rvsc.2020.02.012] [PMID] Akkoc, T. (2020) COVID-19 and Mesenchymal Stem Cell Treatment; Mystery or Not. Advances in Experimental Medicine and Biology, 1298, 167–176. [DOI:10.1007/5584_2020_557] [PMID] Bearden, R. N., Huggins, S. S., Cummings, K. J., Smith, R., Gregory, C. A., & Saunders, W. B. (2017). In-vitro characterization of canine multipotent stromal cells isolated from synovium, bone marrow, and adipose tissue: A donor-matched comparative study. Stem Cell Research and Therapy, 8(1), 218.[DOI:10.1186/s13287-017-0639-6] [PMID] Chen, L., Qu, J., Kalyani, F. S., Zhang, Q., Fan, L., & Fang, Y., et al. (2022) Mesenchymal stem cell-based treatments for COVID-19: status and future perspectives for clinical applications. Cellular and Molecular Life Sciences., 79(3), 142. [DOI:10.1007/s00018-021-04096-y] [PMID] Decaro, N., & Lorusso, A. (2020) Novel human coronavirus (SARS‐CoV‐2): A lesson from animal coronaviruses. Veterinary Microbiology, 244, [DOI:10.1016/j.vetmic.2020.108693] [PMID] Grein, J., Ohmagari, N., Shin, D., Diaz, G., Asperges, E., & Castagna, A., et al. (2020) Compassionate use of remdesivir for patients with severe Covid-19. The New England Journal of Medicine, 382(24), 2327–2336. [DOI:10.1056/NEJMoa2007016] [PMID] Jiang, F., Deng, L., Zhang, L., Cai, Y., Cheung, C. W., & Xia, Z. (2020). Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). Journal of General Internal Medicine, 35(5), 1545–1549. [DOI:10.1007/s11606-020-05762-w] [PMID] Lam, G., Zhou, Y., Wang, J. X., & Tsui, Y. P. (2021).Targeting mesenchymal stem cell therapy for severe pneumonia patients. World Journal Stem Cells., 13(2), 139-154. [DOI:10.4252/wjsc.v13.i2.139] [PMID] Holzworth, J. (1963) Some important disorders of cats. The Cornell Veterinarian, 53, 157–160. [PMID] Iyer, M., Jayaramayya, K., Subramaniam, M. D., Lee, S. B., Dayem, A. A., & Cho, S. G., et al. (2020). COVID-19: An update on diagnostic and therapeutic approach. BMB Reports, 53(4), 191–205. [DOI:10.5483/BMBRep.2020.53.4.080] [PMID] Kennedy, M. A. (2020). Feline infectious peritonitis: Update on pathogenesis, diagnostics, and treatment. The Veterinary Clinic of North America. Small Animal Practice, 50(5), 1001-1011. [DOI:10.1016/j.cvsm.2020.05.002] [PMID] Liu, P., Jiang, J Z., Wan, X F., Hua, Y., Li, L., Zhou, J., Wang, X., Hou, F., Chen, J., Zou, J., Chen, J. (2020) Are pangolins the intermediate host of the 2019 novel coronavirus (SARS‐CoV‐2) PLoS Pathology., 16(5), e1008421. [DOI:10.1371/journal.ppat.1008421. PMID: 32407364.] [PMID] Malaiyan, J., Arumugam, S., Mohan, K., & Gomathi Radhakrishnan, G. (2021). An update on the origin of SARS‐CoV‐2: Despite closest identity, bat (RaTG13) and pangolin derived coronaviruses varied in the critical binding site and O‐linked glycan residues. Journal of Medical Virology, 93(1), 499-505. [DOI:10.1002/jmv.26261] [PMID] Mavian, C., Pond, S. K., Marini, S., Magalis, B. R., Vandamme, A. M., & Dellicour, S., et al. (2020). Sampling bias and incorrect rooting make phylogenetic network tracing of SARS‐COV‐2 infections unreliable. Proceedings of the National Academy of Sciences of the United States of America, 117(23), 12522–12523.[DOI:10.1073/pnas.2007295117] [PMID] Murphy, B. G., Perron, M., Murakami, E., Bauer, K., Park, Y., & Eckstrand, C., et al. (2018). The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies. Veterinary Microbiology, 219, 226–233. [DOI:10.1016/j.vetmic.2018.04.026] [PMID] Pedersen, N. C., Allen, C. E., & Lyons, L. A. (2008). Pathogenesis of feline enteric coronavirus infection. Journal of Feline Medicine and Surgery, 10(6), 529–541. [DOI:10.1016/j.jfms.2008.02.006] [PMID] Pedersen, N. C., Perron, M., Bannasch, M., Montgomery, E., Murakami, E., & Liepnieks, M., et (2019). Efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis. Journal of Feline Medicine and Surgery, 21(4), 271–281. [DOI:10.1177/1098612X19825701] [PMID] Pinky, Gupta, S., Krishnakumar, V., Sharma, Y., Dinda, A. K., & Mohanty, S. (2021). Mesenchymal stem cell derived exosomes: a nano platform for therapeutics and drug delivery in combating COVID-1. Stem Cell Reviews and Reports, 17(1), 33–43. [DOI:10.1007/s12015-020-10002-z] [PMID] Poland, A. M., Vennema, H., Foley, J. E., & Pedersen, N. C. (1996) Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus. Journal of Clinical Microbiology, 34(12), 3180–3184. [DOI:10.1128/jcm.34.12.3180-3184.1996] Salari, V., Mengoni, F., Del Gallo, F., Bertini, G., & Fabene, P. F. (2020). The anti-inflammatory properties of mesenchymal stem cells in epilepsy: Possible treatments and future perspectives. International Journal of Molecular Sciences, 21(24), 9683. [DOI:10.3390/ijms21249683] [PMID] Senegaglia, A. C., Rebelatto, C. L. K., Franck, C. L., Lima, J. S., Boldrini-Leite, L. M., & Daga, D. R., et al. (2021). Combined use of tocilizumab and mesenchymal stromal cells in the treatment of severe covid-19: Case report. Cell Transplantation, 30, [DOI:10.1177/09636897211021008] [PMID] Sironi, M., Hasnain, S. E., Rosenthal, B., Phan, T., Luciani, F., & Shaw, M. A., et al. (2020). SARS‐CoV‐2 and COVID‐19: A genetic, epidemiological, and evolutionary perspective. Infection, Genetics and Evolution, 84, [DOI:10.1016/j.meegid.2020.104384] [PMID] Takano, T., Hohdatsu, T., Hashida, Y., Kaneko, Y., Tanabe, M., & Koyama, H. (2007). A “possible” involvement of TNF-alpha in apoptosis induction in peripheral blood lymphocytes of cats with feline infectious peritonitis. Veterinary Microbiology, 119(2-4), 121–131. [DOI:10.1016/j.vetmic.2006.08.033] [PMID] Tasker, S., Addie, D. D., Egberink, H., Hofmann-Lehmann, R., Hosie, M. J., & Truyen, U., et al. (2023). Feline infectious peritonitis: European advisory board on cat diseases guidelines. Viruses, 15(9), 1847. [DOI:10.3390/v15091847] [PMID] Tiwari, M., & Mishra, D. (2020). Investigating the genomic landscape of novel coronavirus (2019‐nCoV) to identify non‐synonymous mutations for use in diagnosis and drug design. Journal of Clinical Virology, 128, [DOI:10.1016/j.jcv.2020.104441] [PMID] Vennema, H., Poland, A., Foley, J., & Pedersen, N. C. (1998). Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology, 243(1), 150–157. [DOI:10.1006/viro.1998.9045] [PMID] Wang, Y., Zhang, D., Du, G. (2020) Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. 395(10236):1569-1578. [DOI:10.1016/S0140-6736(20)31022-9] [PMID] Webb, T. L., Quimby, J. M., & Dow, S. W. (2012). In vitro comparison of feline bone marrow-derived and adipose tissue-derived mesenchymal stem cells. Journal of Feline Medicine and Surgery, 14(2), 165-168. [DOI:10.1177/1098612X11429224] [PMID] Wong, G., Bi, Y. H., Wang, Q. H., Chen, X. W., Zhang, Z. G., & Yao, Y. G. (2020). Zoonotic origins of human coronavirus 2019 (HCoV‐19/SARS‐CoV‐2): Why is this work important. Zoological Research, 41(3), 213–219. [DOI:10.24272/j.issn.2095-8137.2020.031] [PMID] Zhang, C., Lee, H. J., Shrivastava, A., Wang, R., McQuiston, T. J., Challberg, S. S., Pollok, B. A., & Wang, T. (2018). Long-term in vitro expansion of epithelial stem cells enabled by pharmacological inhibition of PAK1-ROCKMyosin II and TGF-β signaling. Cell Reports, 25(4),1109-1123.e5. [DOI:10.1016/j.celrep.2018.09.072] [PMID] | ||
مراجع | ||
Addie, D. D., Curran, S., Bellini, F., Crowe, B., Sheehan, E., & Ukrainchuk, L., et al. (2020). Oral Mutian®X stopped faecal feline coronavirus shedding by naturally infected cats. Research in Veterinary Science., 130, 222-229. [DOI:10.1016/j.rvsc.2020.02.012] [PMID]
Akkoc, T. (2020) COVID-19 and Mesenchymal Stem Cell Treatment; Mystery or Not. Advances in Experimental Medicine and Biology, 1298, 167–176. [DOI:10.1007/5584_2020_557] [PMID]
Bearden, R. N., Huggins, S. S., Cummings, K. J., Smith, R., Gregory, C. A., & Saunders, W. B. (2017). In-vitro characterization of canine multipotent stromal cells isolated from synovium, bone marrow, and adipose tissue: A donor-matched comparative study. Stem Cell Research and Therapy, 8(1), 218.[DOI:10.1186/s13287-017-0639-6] [PMID]
Chen, L., Qu, J., Kalyani, F. S., Zhang, Q., Fan, L., & Fang, Y., et al. (2022) Mesenchymal stem cell-based treatments for COVID-19: status and future perspectives for clinical applications. Cellular and Molecular Life Sciences., 79(3), 142. [DOI:10.1007/s00018-021-04096-y] [PMID]
Decaro, N., & Lorusso, A. (2020) Novel human coronavirus (SARS‐CoV‐2): A lesson from animal coronaviruses. Veterinary Microbiology, 244, [DOI:10.1016/j.vetmic.2020.108693] [PMID]
Grein, J., Ohmagari, N., Shin, D., Diaz, G., Asperges, E., & Castagna, A., et al. (2020) Compassionate use of remdesivir for patients with severe Covid-19. The New England Journal of Medicine, 382(24), 2327–2336. [DOI:10.1056/NEJMoa2007016] [PMID]
Jiang, F., Deng, L., Zhang, L., Cai, Y., Cheung, C. W., & Xia, Z. (2020). Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). Journal of General Internal Medicine, 35(5), 1545–1549. [DOI:10.1007/s11606-020-05762-w] [PMID]
Lam, G., Zhou, Y., Wang, J. X., & Tsui, Y. P. (2021).Targeting mesenchymal stem cell therapy for severe pneumonia patients. World Journal Stem Cells., 13(2), 139-154. [DOI:10.4252/wjsc.v13.i2.139] [PMID]
Holzworth, J. (1963) Some important disorders of cats. The Cornell Veterinarian, 53, 157–160. [PMID]
Iyer, M., Jayaramayya, K., Subramaniam, M. D., Lee, S. B., Dayem, A. A., & Cho, S. G., et al. (2020). COVID-19: An update on diagnostic and therapeutic approach. BMB Reports, 53(4), 191–205. [DOI:10.5483/BMBRep.2020.53.4.080] [PMID]
Kennedy, M. A. (2020). Feline infectious peritonitis: Update on pathogenesis, diagnostics, and treatment. The Veterinary Clinic of North America. Small Animal Practice, 50(5), 1001-1011. [DOI:10.1016/j.cvsm.2020.05.002] [PMID]
Liu, P., Jiang, J Z., Wan, X F., Hua, Y., Li, L., Zhou, J., Wang, X., Hou, F., Chen, J., Zou, J., Chen, J. (2020) Are pangolins the intermediate host of the 2019 novel coronavirus (SARS‐CoV‐2) PLoS Pathology., 16(5), e1008421. [DOI:10.1371/journal.ppat.1008421. PMID: 32407364.] [PMID]
Malaiyan, J., Arumugam, S., Mohan, K., & Gomathi Radhakrishnan, G. (2021). An update on the origin of SARS‐CoV‐2: Despite closest identity, bat (RaTG13) and pangolin derived coronaviruses varied in the critical binding site and O‐linked glycan residues. Journal of Medical Virology, 93(1), 499-505. [DOI:10.1002/jmv.26261] [PMID]
Mavian, C., Pond, S. K., Marini, S., Magalis, B. R., Vandamme, A. M., & Dellicour, S., et al. (2020). Sampling bias and incorrect rooting make phylogenetic network tracing of SARS‐COV‐2 infections unreliable. Proceedings of the National Academy of Sciences of the United States of America, 117(23), 12522–12523.[DOI:10.1073/pnas.2007295117] [PMID]
Murphy, B. G., Perron, M., Murakami, E., Bauer, K., Park, Y., & Eckstrand, C., et al. (2018). The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies. Veterinary Microbiology, 219, 226–233. [DOI:10.1016/j.vetmic.2018.04.026] [PMID]
Pedersen, N. C., Allen, C. E., & Lyons, L. A. (2008). Pathogenesis of feline enteric coronavirus infection. Journal of Feline Medicine and Surgery, 10(6), 529–541. [DOI:10.1016/j.jfms.2008.02.006] [PMID]
Pedersen, N. C., Perron, M., Bannasch, M., Montgomery, E., Murakami, E., & Liepnieks, M., et (2019). Efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis. Journal of Feline Medicine and Surgery, 21(4), 271–281. [DOI:10.1177/1098612X19825701] [PMID]
Pinky, Gupta, S., Krishnakumar, V., Sharma, Y., Dinda, A. K., & Mohanty, S. (2021). Mesenchymal stem cell derived exosomes: a nano platform for therapeutics and drug delivery in combating COVID-1. Stem Cell Reviews and Reports, 17(1), 33–43. [DOI:10.1007/s12015-020-10002-z] [PMID]
Poland, A. M., Vennema, H., Foley, J. E., & Pedersen, N. C. (1996) Two related strains of feline infectious peritonitis virus isolated from immunocompromised cats infected with a feline enteric coronavirus. Journal of Clinical Microbiology, 34(12), 3180–3184. [DOI:10.1128/jcm.34.12.3180-3184.1996]
Salari, V., Mengoni, F., Del Gallo, F., Bertini, G., & Fabene, P. F. (2020). The anti-inflammatory properties of mesenchymal stem cells in epilepsy: Possible treatments and future perspectives. International Journal of Molecular Sciences, 21(24), 9683. [DOI:10.3390/ijms21249683] [PMID]
Senegaglia, A. C., Rebelatto, C. L. K., Franck, C. L., Lima, J. S., Boldrini-Leite, L. M., & Daga, D. R., et al. (2021). Combined use of tocilizumab and mesenchymal stromal cells in the treatment of severe covid-19: Case report. Cell Transplantation, 30, [DOI:10.1177/09636897211021008] [PMID]
Sironi, M., Hasnain, S. E., Rosenthal, B., Phan, T., Luciani, F., & Shaw, M. A., et al. (2020). SARS‐CoV‐2 and COVID‐19: A genetic, epidemiological, and evolutionary perspective. Infection, Genetics and Evolution, 84, [DOI:10.1016/j.meegid.2020.104384] [PMID]
Takano, T., Hohdatsu, T., Hashida, Y., Kaneko, Y., Tanabe, M., & Koyama, H. (2007). A “possible” involvement of TNF-alpha in apoptosis induction in peripheral blood lymphocytes of cats with feline infectious peritonitis. Veterinary Microbiology, 119(2-4), 121–131. [DOI:10.1016/j.vetmic.2006.08.033] [PMID]
Tasker, S., Addie, D. D., Egberink, H., Hofmann-Lehmann, R., Hosie, M. J., & Truyen, U., et al. (2023). Feline infectious peritonitis: European advisory board on cat diseases guidelines. Viruses, 15(9), 1847. [DOI:10.3390/v15091847] [PMID]
Tiwari, M., & Mishra, D. (2020). Investigating the genomic landscape of novel coronavirus (2019‐nCoV) to identify non‐synonymous mutations for use in diagnosis and drug design. Journal of Clinical Virology, 128, [DOI:10.1016/j.jcv.2020.104441] [PMID]
Vennema, H., Poland, A., Foley, J., & Pedersen, N. C. (1998). Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology, 243(1), 150–157. [DOI:10.1006/viro.1998.9045] [PMID]
Wang, Y., Zhang, D., Du, G. (2020) Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. 395(10236):1569-1578. [DOI:10.1016/S0140-6736(20)31022-9] [PMID]
Webb, T. L., Quimby, J. M., & Dow, S. W. (2012). In vitro comparison of feline bone marrow-derived and adipose tissue-derived mesenchymal stem cells. Journal of Feline Medicine and Surgery, 14(2), 165-168. [DOI:10.1177/1098612X11429224] [PMID]
Wong, G., Bi, Y. H., Wang, Q. H., Chen, X. W., Zhang, Z. G., & Yao, Y. G. (2020). Zoonotic origins of human coronavirus 2019 (HCoV‐19/SARS‐CoV‐2): Why is this work important. Zoological Research, 41(3), 213–219. [DOI:10.24272/j.issn.2095-8137.2020.031] [PMID]
Zhang, C., Lee, H. J., Shrivastava, A., Wang, R., McQuiston, T. J., Challberg, S. S., Pollok, B. A., & Wang, T. (2018). Long-term in vitro expansion of epithelial stem cells enabled by pharmacological inhibition of PAK1-ROCKMyosin II and TGF-β signaling. Cell Reports, 25(4),1109-1123.e5. [DOI:10.1016/j.celrep.2018.09.072] [PMID] | ||
آمار تعداد مشاهده مقاله: 436 تعداد دریافت فایل اصل مقاله: 324 |