تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,036 |
تعداد مشاهده مقاله | 125,507,024 |
تعداد دریافت فایل اصل مقاله | 98,770,906 |
بررسی و شبیهسازی اثر تغییر اقلیم، چرای دام و مصرف کود دامی بر ذخیره کربن آلی خاکهای جنگلی ارتفاعات مختلف با مدل سنچری | ||
تحقیقات آب و خاک ایران | ||
دوره 55، شماره 8، آبان 1403، صفحه 1377-1400 اصل مقاله (2.7 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.373092.669670 | ||
نویسندگان | ||
مهران میثاقی* 1؛ احمد گلچین2؛ محمد صادق عسکری3 | ||
1گروه مهندسی خاک دانشکده کشاورزی دانشگاه زنجان زنجان ایران | ||
2گروه مهندسی خاک. دانشکده کشاورزی. دانشگاه زنجان. زنجان. ایران | ||
3گروه علوم خاک دانشکده کشاورزی، دانشگاه زنجان | ||
چکیده | ||
خاکهای جنگلی به عنوان یکی از مهمترین مخازن کربن در زمین شناخته میشوند که نقش بسیار مهمی در تعادل اقلیم و کاهش گازهای گلخانهای دارند. در این تحقیق، اثر ارتفاع، تغییر اقلیم، چرای دام و مصرف کود دامی بر ذخیره کربن آلی خاکهای جنگلی شهرستان تالش مورد بررسی قرار گرفت. برای بررسی اثرات عوامل اقلیمی و مدیریتی بر ذخیره کربن آلی خاکها از مدل سنچری استفاده شد. نتایج نشان داد که با افزایش ارتفاع، به دلیل بارندگی بیشتر و دمای کمتر، ذخیره کربن آلی خاکها افزایش مییابد. مدل سنچری ذخیره کربن آلی خاک را با دقت بالا تخمین زد. صحنهبندیهای تعریفشده برای مدل سنچری نشان داد که تغییر اقلیم با کاهش بارندگی و افزایش دما، ذخیره کربن آلی را به طور قابلتوجهی کاهش میدهد. اثر منفی تغییر اقلیم در ارتفاعات بیشتر است. چرای دام نیز ذخیره کربن آلی را به ویژه در ارتفاعات مرتفعتر، کاهش میدهد. در مقابل، مصرف کود دامی باعث افزایش ذخیره کربن آلی خاکها میشود و اثر مثبت آن در ارتفاعات بیشتر است. در صحنهبندی تغییر اقلیم توام با مصرف کود دامی، کود دامی تا حد زیادی اثر منفی تغییر اقلیم را جبران میکند، اما به طور کامل آن را خنثی نمیکند. نتایج این تحقیق نشان میدهد که مدلهای شبیهسازی کربن آلی خاک، ابزارهای دقیقی برای پیشبینی اثرات تغییر اقلیم، چرا و کود دامی هستند. همچنین حفظ ارتفاعات جنگلی و مدیریت بهینه جنگل برای جلوگیری از کاهش ذخیره کربن آلی و مقابله با تغییرات اقلیمی، اهمیت ویژهای دارد. | ||
کلیدواژهها | ||
ذخیره کربن آلی خاک؛ تغییر اقلیم؛ چرا؛ کود دامی؛ مدل سنچری | ||
عنوان مقاله [English] | ||
Investigating and simulating the effect of climate change, grazing and manure application on organic carbon storage of forest soils at different altitudes with the Century model | ||
نویسندگان [English] | ||
Mehran Misaghi1؛ Ahmad Golchin2؛ Mohammad Sadegh Askari3 | ||
1Agriculture Faculty University of Zanjan Zanjan Iran | ||
2Soil Science Department, Agriculture Faculty, University of Zanjan, Zanjan, Iran | ||
3Department of Soil Science, University of Zanjan | ||
چکیده [English] | ||
Forest soils are recognized as one of the most important carbon sinks on Earth, playing a critical role in climate balance and greenhouse gas mitigation. This study investigated the effects of altitude, climate change, grazing, and manure application on soil organic carbon (SOC) stock in forest soils of Talesh County, Iran. The Century model was used to investigate the effects of climate and management factors on soil organic carbon storage. The results showed that SOC stock increased with increasing altitude due to higher precipitation and lower temperature. The Century model estimated SOC stock with high accuracy. The defined scenarios for the Century model showed that climate change with reduced precipitation and increased temperature significantly decreased SOC stock. The negative effect of climate change was more pronounced at higher altitudes. Grazing also reduced SOC stock, especially at higher altitudes. In contrast, manure application increased SOC stock, and its positive effect was more pronounced at higher altitudes. In the climate change scenario with manure application, manure application largely compensated for the negative effect of climate change, but did not completely neutralize it. The results of this study indicate that soil organic carbon simulation models are accurate tools for predicting the effects of climate change, grazing, and manure application. In addition, the conservation of high- altitude forests and optimal forest management are of particular importance to prevent the loss of SOC stock and to combat climate change. | ||
کلیدواژهها [English] | ||
Soil organic carbon storage, Climate change, Grazing, Manure application, Century model | ||
مراجع | ||
Al-Shammary, A. A., Kouzani, A. Z., Saeed, T. R., Lahmod, N. R., & Mouazen, A. M. (2019). Evaluation of a novel electromechanical system for measuring soil bulk density. Biosystems Engineering, 179, 140-154. Althoff, T. D., Menezes, R. S. C., de Siqueira Pinto, A., Pareyn, F. G. C., de Carvalho, A. L., Martins, J. C. R., ... & Sampaio, E. V. D. S. B. (2018). Adaptation of the century model to simulate C and N dynamics of Caatinga dry forest before and after deforestation. Agriculture, ecosystems & environment, 254, 26-34. Amirpour, M., Shorafa, M., Gorji, M., & Naghavi, H. (2016). Effect of subsurface water retention using polyethylene membranes with surface mulch and irrigation on moisture, temperature and salinity of sandy soil of an arid region in Iran. Advances in Environmental Sciences, 8 (1), 33-41. Banday, M., Bhardwaj, D. R., & Pala, N. A. (2019). Influence of forest type, altitude and NDVI on soil properties in forests of North Western Himalaya, India. Acta Ecologica Sinica, 39 (1), 50-55. Badeyan, Z., & Mansouri, M. (1396). Estimation of Carbon Sequestration by Atriplex canescens Species at the Surface Unit Level and Investigating the Relationship Between Carbon Sequestration and Soil and Vegetation Factors in Cheshme Ali, Qazvin Region. Human and the Environment, 15 (4), 01-10. Bahn, M., Reichstein, M., Ciais, P., et al. (2014). Soil respiration in heterotrophic and autotrophic compartments in Europe. Global Change Biology, 20 (12), 3911-3922. Bakker, J. D., Rudebusch, F., & Moore, M. M. (2010). Effects of long-term livestock grazing and habitat on understory vegetation. Western North American Naturalist, 70 (3), 334-344. Beutler, S. J., Pereira, M. G., Tassinari, W. D. S., Menezes, M. D. D., Valladares, G. S., & Anjos, L. H. C. D. (2017). Bulk density prediction for Histosols and soil horizons with high organic matter content. Revista Brasileira de Ciência do Solo, 41. Bortolon, E. S. O., Mielniczuk, J., Tornquist, C. G., Lopes, F., & Bergamaschi, H. (2011). Validation of the Century model to estimate the impact of agriculture on soil organic carbon in Southern Brazil. Geoderma, 167, 156-166. Cardinael, R., Chevallier, T., Guenet, B., Girardin, C., Cozzi, T., Pouteau, V., & Chenu, C. (2020). Organic carbon decomposition rates with depth and contribution of inorganic carbon to CO2 emissions under a Mediterranean agroforestry system. European Journal of Soil Science, 71 (5), 909-923. Chang, X., Bao, X., Wang, S., Wilkes, A., Erdenetsetseg, B., Baival, B., ... & Damdinsuren, B. (2015). Simulating effects of grazing on soil organic carbon stocks in Mongolian grasslands. Agriculture, Ecosystems & Environment, 212, 278-284. Chang, R., Li, N., Sun, X., Hu, Z., Bai, X., & Wang, G. (2018). Nitrogen addition reduces dissolved organic carbon leaching in a montane forest. Soil Biology and Biochemistry, 127, 31-38. Chen, S., Arrouays, D., Angers, D. A., Chenu, C., Barré, P., Martin, M. P., ... & Walter, C. (2019). National estimation of soil organic carbon storage potential for arable soils: A data-driven approach coupled with carbon-landscape zones. Science of the Total Environment, 666, 355-367. Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623. Conant, R.T., Paustian, K., & Parton, W.J. (2010). Grassland sediments as a source and sink for atmospheric greenhouse gases. Nature Geoscience, 3 (1), 71-77. Cole, C. V., Duxbury, J., Freney, J., Heinemeyer, O., Minami, K., Mosier, A., ... & Zhao, Q. (1997). Global estimates of potential mitigation of greenhouse gas emissions by agriculture. Nutrient cycling in Agroecosystems, 49, 221-228. Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440 (7081), 165-173. De Vos, B., Lettens, S., Muys, B., & Deckers, J. A. (2007). Walkley–Black analysis of forest soil organic carbon: recovery, limitations and uncertainty. Soil Use and Management, 23 (3), 221-229. Fang, C., Smith, P., Moncrieff, J. B., & Smith, J. U. (2020). Land use and management effects on soil organic carbon in the UK. Soil Use and Management, 36 (1), 105-116. Farina, R., Coleman, K., & Whitmore, A. P. (2013). Modification of the RothC model for simulations of soil organic C dynamics in dryland regions. Geoderma, 200, 18-30. Fischer, M., Bossdorf, O., Gockel, S., Hänsel, F., Hemp, A., Hessenmöller, D., ... & Weisser, W. W. (2010). Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. Basic and applied Ecology, 11 (6), 473-485. Gomes, A. G., & Varriale, M. C. (2004). Modelagem de ecossistemas: uma introdução. Ed. UFSM. Guo, M., Zhao, B., Wen, Y., Hu, J., Dou, A., Zhang, Z., ... & Zhu, J. (2022). Elevational pattern of soil organic carbon release in a Tibetan alpine grassland: Consequence of quality but not quantity of initial soil organic carbon. Geoderma, 428, 116148. Haeberli, W., Hoelzle, M., Paul, F., & Zemp, M. (2007). Integrated monitoring of mountain glaciers as key indicators of global change: The Swiss Alps. Mountain Research and Development, 27 (2), 180-190. Hamilton, J. G., DeLucia, E. H., George, K., Naidu, S. L., Finzi, A. C., & Schlesinger, W. H. (2002). Forest carbon balance under elevated CO 2. Oecologia, 131, 250-260. Hua, L. C., Lin, J. L., Syue, M. Y., Huang, C., & Chen, P. C. (2018). Optical properties of algogenic organic matter within the growth period of Chlorella sp. and predicting their disinfection by-product formation. Science of the Total Environment, 621, 1467-1474. Huluka, G., & Miller, R. (2014). Particle size determination by hydrometer method. Southern Cooperative Series Bulletin, 419, 180-184. Intergovernmental Panel on Climate Change. (2000). Land Use, Land-Use Change, and Forestry: A Special Report of the Intergovernmental Panel on Climate Change. Jansson, P. E., & Berglund, S. (2003). Climate change and soil carbon sequestration from afforestation of marginal agricultural land in Sweden. Forest Ecology and Management, 182 (1-3), 35-46. Kazemi Rad, L., & Mohammadi, H. (2016). Evaluation of an Appropriate General Circulation Model for Predicting Climate Change in Gilan Province. Geography and Natural Hazards, 4 (4), 55-74. Knapp, A.K. and Smith, M.D., 1998. Variation among biomes in temporal trends in soil organic matter. Soil Science Society of America Journal, 62, 1620-1625. Knapp, L. J., McMillan, J. M., & Harris, N. B. (2017). A depositional model for organic-rich Duvernay Formation mudstones. Sedimentary geology, 347, 160-182. Lal, R. (2009). Soils and world food security. Lal, R. (2015). Sequestering carbon and increasing productivity by conservation agriculture. Journal of soil and water conservation, 70 (3), 55A-62A. Li, S., Li, J., Shi, L., Li, Y., & Wang, Y. (2021). Role of phosphorous additives on nitrogen conservation and maturity during pig manure composting. Environmental Science and Pollution Research, 28, 17981-17991. Lin, F., Chen, X., & Yao, H. (2017). Evaluating the use of Nash-Sutcliffe efficiency coefficient in goodness-of-fit measures for daily runoff simulation with SWAT. Journal of Hydrologic Engineering, 22 (11), 05017023. Liu, W., Chen, S., Qin, X., Baumann, F., Scholten, T., Zhou, Z., ... & Qin, D. (2012). Storage, patterns, and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai–Tibetan Plateau. Environmental Research Letters, 7 (3), 035401. Luo, Y., Zhou, X., Wang, Z., & Zhang, D. (2018). Climate change and soil organic carbon dynamics in terrestrial ecosystems: A review. Global Change Biology, 24 (11), 4551-4563. Lugato, E., Bampa, F., Panagos, P., Montanarella, L., & Jones, A. (2014). Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices. Global change biology, 20 (11), 3557-3567. Mehrjou, F., Barzehkar, M., Hashemi, S. H., & Mohammadi, A. (1393). Investigating Changes in Physicochemical and Biological Factors in the Vermicomposting Process Using Cattle Manure and Earthworm (Eisenia foetida) as Substrate. Human and the Environment, 12 (1), 75-83. McCormick, K., & Salcedo, J. (2017). SPSS statistics for data analysis and visualization. John Wiley & Sons. Molina-Montenegro, M. A., Oses, R., Torres-Díaz, C., Atala, C., Zurita-Silva, A., & Ruiz-Lara, S. (2016). Root-endophytes improve the ecophysiological performance and production of an agricultural species under drought condition. AoB Plants, 8, plw062. Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis. John Wiley & Sons. Nascimento, A. F. D., Mendonça, E. D. S., Leite, L. F. C., Scholberg, J., & Neves, J. C. L. (2012). Calibration and validation of models for short-term decomposition and N mineralization of plant residues in the tropics. Scientia Agricola, 69, 393-401. Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., ... & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333 (6045), 988-993. Pandey, J., Singh, A. V., Singh, R., Kaushik, P., & Pandey, U. (2015). Atmospheric deposition coupled terrestrial export of organic carbon in Ganga River (India): linking cross-domain carbon transfer to river DOC. International Aquatic Research, 7, 273-285. Paustian, K., Babcock, B., Kling, C., Hatfield, J., Lal, R., McCarl, B., ... & Zilberman, D. (2004). In Agricultural Mitigation of Greenhouse Gases: Science and Policy Options; Council on Agricultural Science and Technology (CAST) (Vol. 141). Report. Qiu, W., Li, Q., Lei, Z. K., Qin, Q. H., Deng, W. L., & Kang, Y. L. (2013). The use of a carbon nanotube sensor for measuring strain by micro-Raman spectroscopy. Carbon, 53, 161-168. Ray, R. L., Griffin, R. W., Fares, A., Elhassan, A., Awal, R., Woldesenbet, S., & Risch, E. (2020). Soil CO2 emission in response to organic amendments, temperature, and rainfall. Scientific reports, 10 (1), 5849. Rhodes, C. J. (2014). Soil erosion, climate change and global food security: challenges and strategies. Science progress, 97 (2), 97-153. Ripple, W. J., Wolf, C., Newsome, T. M., Barnard, P., & Moomaw, W. R. (2020). World scientists’ warning of a climate emergency. BioScience, 70 (1), 8-100. Rocci, K. S., Bird, M., Blair, J. M., Knapp, A. K., Liang, C., & Cotrufo, M. F. (2023). Thirty years of increased precipitation modifies soil organic matter fractions but not bulk soil carbon and nitrogen in a mesic grassland. Soil Biology and Biochemistry, 185, 109145. Saravesi, K., Markkola, A., Rautio, P., Roitto, M., & Tuomi, J. (2008). Defoliation causes parallel temporal responses in a host tree and its fungal symbionts. Oecologia, 156, 117-123. Sedgwick, P. (2012). Pearson’s correlation coefficient. Bmj, 345. Schindlbacher, A., de Gonzalo, C., Díaz‐Pinés, E., Gorría, P., Matthews, B., Inclán, R., ... & Jandl, R. (2010). Temperature sensitivity of forest soil organic matter decomposition along two elevation gradients. Journal of Geophysical Research: Biogeosciences, 115 (G3). Schipper, L.A., Parfitt, R.L., and Ross, D.J., 2007. Long-term effects of grazing on soil physical and chemical properties in a temperate hill country pasture. New Zealand Journal of Agricultural Research, 50, 27-38. Shedayi, A. A., Xu, M., Naseer, I., & Khan, B. (2016). Altitudinal gradients of soil and vegetation carbon and nitrogen in a high-altitude nature reserve of Karakoram ranges. SpringerPlus, 5, 1-14. Sheikh, M. A., Kumar, M., & Bussmann, R. W. (2009). Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya. Carbon balance and management, 4, 1-6. Singh, N., Pal, N., Mahajan, G., Singh, S., & Shevkani, K. (2011). Rice grain and starch properties: Effects of nitrogen fertilizer application. Carbohydrate polymers, 86 (1), 219-225. Smith, P., Smith, J.U., Powlson, D.S., Angus, J.F., and Robertson, G.P., 2004. Arable and grassland soil carbon sequestration in Scotland from 1978 to 2003. Global Change Biology, 10, 1831-1839. Smith, P., Smith, J. U., Powlson, D. S., McGill, W. B., Arah, J. R. M., Chertov, O. G., ... & Whitmore, A. P. (1997). A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma, 81 (1-2), 153-225. Smith, J. U., Smith, P., Monaghan, R., & MacDonald, A. J. (2002). When is a measured soil organic matter fraction equivalent to a model pool?. European Journal of Soil Science, 53 (3), 405-416. Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., ... & Towprayoon, S. (2007). Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agriculture, Ecosystems & Environment, 118 (1-4), 6-28. Stergiadi, M., Van Der Perk, M., De Nijs, T., & Bierkens, M. F. (2016). Effects of climate change and land management on soil organic carbon dynamics and carbon leaching in northwestern Europe. Biogeosciences, 13 (5), 1519-1536. Stockmann, U., Adams, M. A., Crawford, J. W., Field, D. J., Henakaarchchi, N., Jenkins, M., ... & Zimmermann, M. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment, 164, 80-99. Teague, R., Provenza, F., Kreuter, U., Steffens, T., & Barnes, M. (2013). Multi-paddock grazing on rangelands: why the perceptual dichotomy between research results and rancher experience?. Journal of Environmental management, 128, 699-717. TerraClimate. https://climate.northwestknowledge.net/TERRACLIMATE/index_directDownloads.php Török, P., Penksza, K., Tóth, E., Kelemen, A., Sonkoly, J., & Tóthmérész, B. (2018). Vegetation type and grazing intensity jointly shape grazing effects on grassland biodiversity. Ecology and Evolution, 8 (20), 10326-10335. Tsui, C. C., Chen, Z. S., & Hsieh, C. F. (2004). Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan. Geoderma, 123 (1-2), 131-142. Wang, F. P., Wang, X. C., Yao, B. Q., Zhang, Z. H., Shi, G. X., Ma, Z., ... & Zhou, H. K. (2018). Effects of land-use types on soil organic carbon stocks: a case study across an altitudinal gradient within a farm-pastoral area on the eastern Qinghai-Tibetan Plateau, China. Journal of Mountain Science, 15 (12), 2693-2702. Wang, X., Williams, J. R., Gassman, P. W., Baffaut, C., Izaurralde, R. C., Jeong, J., & Kiniry, J. R. (2012). EPIC and APEX: Model use, calibration, and validation. Transactions of the ASABE, 55 (4), 1447-1462. Xu, Y., Ge, X., Gao, G., Yang, Y., Hu, Y., Li, Z., & Zhou, B. (2023). Divergent contribution of microbial-and plant-derived carbon to soil organic carbon in Moso bamboo forests left unmanaged. Catena, 233, 107481. Yang, Y., Mohammat, A., Feng, J., Zhou, R., & Fang, J. (2007). Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry, 84, 131-141. Zhang, R., & Wienhold, B. J. (2002). The effect of soil moisture on mineral nitrogen, soil electrical conductivity, and pH. Nutrient cycling in Agroecosystems, 63, 251-254. Zhang, D. (2017). A coefficient of determination for generalized linear models. The American Statistician, 71 (4), 310-316. Zhang, L., Zheng, Q., Liu, Y., Liu, S., Yu, D., Shi, X., ... & Fan, X. (2019). Combined effects of temperature and precipitation on soil organic carbon changes in the uplands of eastern China. Geoderma, 337, 1105-1115. Zhang, Z., Gong, J., Wang, B., Li, X., Ding, Y., Yang, B., ... & Zhang, W. (2020). Regrowth strategies of Leymus chinensis in response to different grazing intensities. Ecological Applications, 30 (5), e02113. Zeng, Y., Fang, N., & Shi, Z. (2020). Effects of human activities on soil organic carbon redistribution at an agricultural watershed scale on the Chinese Loess Plateau. Agriculture, Ecosystems & Environment, 303, 107112. | ||
آمار تعداد مشاهده مقاله: 103 تعداد دریافت فایل اصل مقاله: 78 |