تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,514 |
تعداد مشاهده مقاله | 124,131,026 |
تعداد دریافت فایل اصل مقاله | 97,237,289 |
بررسی پراکنش فضایی و روند ذرات گردوغبار در غرب آسیا و ارتباط آن با تغییرات کاربری اراضی | ||
تحقیقات آب و خاک ایران | ||
دوره 55، شماره 8، آبان 1403، صفحه 1415-1432 اصل مقاله (2.17 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.374563.669685 | ||
نویسندگان | ||
شلیر کاتورانی1؛ محمود احمدی* 2؛ عباسعلی داداشی رودباری3 | ||
1دانشجوی دکتری اقلیم شناسی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران | ||
2دانشیار آب و هواشناسی، دانشگاه شهید بهشتی، دانشکده علوم زمین، تهران | ||
3پژوهشگر پسادکتری اقلیم شناسی، گروه جغرافیا، دانشگاه فردوسی مشهد، مشهد، ایران. | ||
چکیده | ||
هدف این مطالعه بررسی تغییرات گردوغبار در منطقه غرب آسیا و ارتباط آن با تغییرات کاربری اراضی است. برای این منظور از دادههای ماهانه عمق نوری ذرات گردوخاک (DOD) مجموعه داده باز تحلیل EAC4 با تفکیک افقی 75/0 درجه قوسی و کاربری اراضی سامانه طبقهبندی پوشش زمین (LCCS) استفاده شد. نتایج نشان داد بیشینه DOD در فصول بهار و تابستان به دلیل کاهش رطوبت خاک، کاهش آب رودها، کمبود پوشش گیاهی و اقلیم خشک در مناطق بینالنهرین، بیابانهای عراق سوریه، جنوب شرقی و جنوبغربی ایران است. بطور کلی DOD از جنوب به شمال در منطقه موردمطالعه کاهش مییابد اما در شمالشرقی ایران به دلیل وجود بیابان قزل قوم، قره قوم، بستر خشکیده آرال قوم و قره بغاز این شاخص افزایش قابلتوجهی را نشان داده است. بررسی روند DOD نشان میدهد که این متغیر در بیشتر ماههای سال دارای روند افزایشی است. بیشینه روند افزایشی معنیدار در سطح 05/0 در ماههای دسامبر، ژانویه، مارس و نوامبر بخصوص در غرب، جنوب و شمال شرقی ایران دیده شد. بررسی تغییرات کاربری اراضی نشان داد که مساحت مناطقی با پوشش گیاهی متراکم از 6/7 درصد به 3/7 درصد و مراتع از 1/3 درصد به 8/2 درصد کاهش یافته و در مقابل مساحت زمینهای زراعی از 1/16 درصد به 25/16 درصد افزایش داشته است که این مناطق بیشینه مقدار رخداد گردوغبار را تجربه کردند. | ||
کلیدواژهها | ||
روند گردو غبار؛ عمق نوری گردوغبار؛ طبقهبندی پوشش زمین؛ مجموعه داده EAC4 | ||
عنوان مقاله [English] | ||
Examination of the spatial dispersion and trend of Dust Optical Depth (DOD) in West Asia and its relation with land use change | ||
نویسندگان [English] | ||
Shler Katorani1؛ Mahmoud Ahmadi2؛ Abbasali Dadashi-Roudbari3 | ||
1Ph. D student in Climatology, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, | ||
2Associate professor of Climatology Shahid Beheshti University The Faculty of Earth Sciences Tehran,Iran | ||
3Postdoctoral Research Associate of Climatology, Department of Geography, Ferdowsi University of Mashhad, Mashhad, Iran | ||
چکیده [English] | ||
The purpose of this study is to examine the changes in dust in the West Asia region and its association with land use changes. For this purpose, the Dust Optical Depth (DOD) from the open EAC4 dataset with a horizontal resolution of 0.75o and the Global Land Cover Classification System (LCCS) dataset with a horizontal resolution of 300 meters were used. The results showed that the maximum DOD in the spring and summer seasons is due to decreased soil moisture, reduced river water levels, lack of vegetation cover, and the dry climate in the Mesopotamian regions, the deserts of Iraq and Syria, and southeastern and southwestern Iran. Generally, DOD decreases with high latitude in the region; however, in northeastern Iran, due to the presence of the Kyzylkum, Karakum, Aral Karakum, and Garabogazköl deserts, this index has shown a significant increase. The analysis of the DOD trend indicates that this variable is on an increasing trend in most months of the year. The most significant increasing trend at the 0.05 level is observed in December, January, March, and November, especially in the western, southern, and northeastern parts of Iran. The examination of land use changes has revealed that the area of regions with dense vegetation cover has decreased from 7.6% to 3.7%, and pastures have decreased from 3.1% to 2.8%, while in contrast, the area of agricultural lands has increased from 16.1% to 16.25%, and these areas have experienced the highest amount of dust event. | ||
کلیدواژهها [English] | ||
Dust trend, Dust Optical Depth (DOD), West Asia, EAC4 dataset | ||
مراجع | ||
Afshari, M., & Vali, A. (2024). Application of Maximum Entropy Model and Remote Sensing Technique to predict susceptible areas to dust storms in Isfahan Province, Iran. ECOPERSIA, 12(1), 25-37. Al-Shidi, H. K., Al-Reasi, H. A., & Sulaiman, H. (2022). Heavy metals levels in road dust from Muscat, Oman: relationship with traffic volumes, and ecological and health risk assessments. International Journal of Environmental Health Research, 32(2), 264-276. Adnan, M., Khan, F., Rehman, N., Ali, S., Hassan, S. S., Dogar, M. M., ... & Hasson, S. (2021). Variability and predictability of summer monsoon rainfall over Pakistan. Asia-Pacific Journal of Atmospheric Sciences, 57(1), 89-97. Amini, A. (2020). The role of climate parameters variation in the intensification of dust phenomenon. Natural Hazards, 102(1), 445-468. Arami, S. A., Ownegh, M., MohammadianBehbahani, A., Akbari, M., & Zarasvandi, A. (2018). The analysis of dust hazard studies in southwest region of Iran in 22 years (1996-2017). Journal of Spatial Analysis Environmental Hazarts, 5(1), 39-66. Azizi, G.; Shamsipour, A. A.; Miri, M.; & T. Safarrad, 2012. Statistic and Synoptic Analysis of Dust Phenomena in West of Iran, Journal of Environmental Studies, 38 (3), 123-134. doi: 10.22059/jes.2012.29154 (inPersian). Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., ... & Thépaut, J. N. (2021). The ERA5 global reanalysis: Preliminary extension to 1950. Quarterly Journal of the Royal Meteorological Society, 147(741), 4186-4227.https://doi.org/10.1002/qj.4174. Boloorani, A. D., Soleimani, M., Papi, R., Nasiri, N., Samany, N. N., Mirzaei, S., & Al-Hemoud, A. (2024). Assessing the role of drought in dust storm formation in the Tigris and Euphrates basin. Science of The Total Environment, 171193. Boloorani, A. D., Papi, R., Soleimani, M., Al-Hemoud, A., Amiri, F., Karami, L., ... & Mirzaei, S. (2023). Visual interpretation of satellite imagery for hotspot dust sources identification. Remote Sensing Applications: Society and Environment, 29, 100888. Chappell, A., Webb, N. P., Hennen, M., Schepanski, K., Ciais, P., Balkanski, Y., ... & Leys, J. F. (2023). Satellites reveal Earth's seasonally shifting dust emission sources. Science of the Total Environment, 883, 163452. Chen, S., Jiang, N., Huang, J., Xu, X., Zhang, H., Zang, Z., Huang, K., Xu, X., Wei, Y., Guan, X., Zhang, X., Luo, Y., Hu, Z., & Feng, T. (2018). Quantifying contributions of natural and anthropogenic dust emission from different climatic regions. Atmospheric Environment, 191, 94-104. Chen, S., Jiang, N., Huang, J., Zang, Z., Guan, X., Ma, X., Luo, Y., Li, J., Zhang, X., & Zhang, Y. (2019). Estimations of indirect and direct anthropogenic dust emission at the global scale. Atmospheric Environment, 200, 50-60. Dadashi-Roudbari, A., & Ahmadi, M. (2021). An assessment of change point and trend of diurnal variation of dust storms in Iran: a multi-instrumental approach from in situ, multi-satellite, and reanalysis dust product. Meteorology and Atmospheric Physics, 133, 1523-1544. Dadashi-Roudbari, A. (2020). Analysis of spatiotemporal variations of vertical and horizontal patterns of aerosols and evaluation of its Climate feedback in Iran, Ph.D. Thesis Urban Climatology, Shahid Beheshti University, Tehran, Iran (In Persian). Darvishi Boloorani, A., Najafi, M. S., & Mirzaie, S. (2021). Role of land surface parameter change in dust emission and impacts of dust on climate in Southwest Asia. Natural Hazards, 109(1), 111-132.https://doi.org/10.1007/s11069-021-04828-0 Daufresne, M., Lengfellner, K., & Sommer, U. (2009). Global warming benefits the small in aquatic ecosystems. Proceedings of the National Academy of Sciences, 106(31), 12788-12793. https://doi.org/10.1073/pnas.0902080106 Fallah Zazuli, M., Vafaeinezhad, A., Kheirkhah Zarkesh, M. M., & Ahmadi Dehka, F. (2014). Source routing of dust haze phenomenon in the west and southwest of Iran and its synoptic analysis by using remote sensing and GIS. Journal of RS and GIS for Natural Resources, 5(4), 61-78. (In Persian). Fan, Y., Xu, W., Wang, Y., Wang, Y., Yu, S., & Ye, Q. (2020). Association of occupational dust exposure with combined chronic obstructive pulmonary disease and pneumoconiosis: a cross-sectional study in China. BMJ Open, 10(9), e038874. Field, J. P., Belnap, J., Breshears, D. D., Neff, J. C., Okin, G. S., Whicker, J. J., ... & Reynolds, R. L. (2010). The ecology of dust. Frontiers in Ecology and the Environment, 8(8), 423-430. Ghatresamani, M. (2018). Increasing the Dust t in Iran and Its Dimensions in International Law. In The 2nd International Conference on Dust, Ilam University, Ilam, Iran.(in Persian). Gherboudj, I., Beegum, S. N., & Ghedira, H. (2017). Identifying natural dust source regions over the Middle-East and North-Africa: Estimation of dust emission potential. Earth-science reviews, 165, 342-355.https://doi.org/10.1016/j.earscirev.2016.12.010 Gill, T. E. (1996). Eolian sediments generated by anthropogenic disturbance of playas: human impacts on the geomorphic system and geomorphic impacts on the human system. Geomorphology, 17(1-3), 207-228.https://doi.org/10.1016/0169-555X(95)00104-D Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., & Zhao, M. (2012). Global‐scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Reviews of Geophysics, 50(3), RG3005.https://doi.org/10.1029/2012RG000388 Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., & Zhao, M. (2012). Global‐scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Reviews of Geophysics, 50(3). Goudie, A. (2018). Dust storms and ephemeral lakes. Desert, 23(1), 153-164. Goudie, A. S., & Middleton, N. J. (2006). Desert dust in the global system. Springer Science & Business Media. Haddad, M., Akramkhanov, A., Worqlul, A., Strohmeier, S., de Jong, S., Zakhadullaev, A., ... & Stathopoulos, C. (2024). Vegetation Scenarios to Improve the Conditions at the Desiccated Aral Seabed and to Reduce the Impacts of Sand and Dust Storms (No. EGU24-19118). Copernicus Meetings. Hamed, K. H., & Rao, A. R. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of hydrology, 204(1-4), 182-196. https://doi.org/10.1016/S0022-1694(97)00125-X Mohammadi, Z., Rahimi, D., Najafi, M. R., & Zakerinejad, R. (2024). The impact of environmental degradation and climate change on dust in Khuzestan province, Iran. Natural Hazards, 1-20. Mohajeri, S. H., Eydi, Z., & Mirshafiei, S. R. (2024). Mapping the distribution and temporal trends of dust storm sources in the Middle East using satellite data. Natural Hazards, 120(1), 389-407. Naghibi, A., Hashemi, H., Zhao, P., Brogaard, S., Eklund, L., Hassan, H. H., & Mansourian, A. (2024). Spatiotemporal variability of dust storm source susceptibility during wet and dry periods: The Tigris-Euphrates River Basin. Atmospheric Pollution Research, 15(1), 101953. Jafari, M., Mesbahzadeh, T., Masoudi, R., Zehtabian, G., & Amouei Torkmahalleh, M. (2021). Dust storm surveying and detection using remote sensing data, wind tracing, and atmospheric thermodynamic conditions (case study: Isfahan Province, Iran). Air Quality, Atmosphere & Health, 14, 1301-1311.https://doi.org/10.1007/s11869-021-01021-x. jamalpour bergai, S., ahmadi, H., Moeini, A., & faraji, M. (2021). Detection of dust sources by land use type, using remote sensing techniques and fuzzy logic, case study: south-east Ahwaz. Watershed Engineering and Management, 13(2), 255-268. doi: 10.22092/ijwmse.2020.125229.1602(inPersian) Jin, C., Wang, Y., Li, T., & Yuan, Q. (2022). Global validation and hybrid calibration of CAMS and MERRA-2 PM2. 5 reanalysis products based on OpenAQ platform. Atmospheric Environment, 274, 118972. Jin, Q., Wei, J., Lau, W. K., Pu, B., & Wang, C. (2021). Interactions of Asian mineral dust with Indian summer monsoon: Recent advances and challenges. Earth-Science Reviews, 215, 103562.https://doi.org/10.1016/j.earscirev.2021.103562 Kandakji, T., Gill, T. E., & Lee, J. A. (2021). Drought and land use/land cover impact on dust sources in Southern Great Plains and Chihuahuan Desert of the US: Inferring anthropogenic effect. Science of the Total Environment, 755, 142461.https://doi.org/10.1016/j.scitotenv.2020.142461 Kermani, M., Taherain, E., & Izanloo, M. (2016). Analysis of dust and dust storms in Iran, Investigation Internal and external origin of dust storms in Iran using satellite images and Control methods. Rahavard Salamat Journal, 2(1), 39-51. Khair, M. S. G., Borna, R., Morshedi, J., & Ghorbanian, J. (2024). Revealing the role of changes in vegetation cover and soil moisture in the annual distribution of dust events in Khuzestan province. Scientific Journal of Golestan University, 5(16).
Lakshmi, N. B., Babu, S. S., & Nair, V. S. (2023). Mineral dust aerosols over the Himalayas from polarization-resolved satellite lidar observations. Atmospheric Environment, 296, 119584. Lee, J. A., & Gill, T. E. (2015). Multiple causes of wind erosion in the Dust Bowl. Aeolian Research, 19, 15-36. Li, J., Wong, M. S., & Nazeer, M. (2023). Integrating physical index and self-organizing mapping for aerosol dust detection (PISOM) over Himawari-8 AHI satellite images. Atmospheric Environment, 119921. Li, Z., Lau, W. M., Ramanathan, V., Wu, G., Ding, Y., Manoj, M. G., ... & Brasseur, G. P. (2016). Aerosol and monsoon climate interactions over Asia. Reviews of Geophysics, 54(4), 866-929. Lyu, Y., Qu, Z., Liu, L., Guo, L., Yang, Y., Hu, X., ... & Liu, Q. (2017). Characterization of dustfall in rural and urban sites during three dust storms in northern China, 2010. Aeolian Research, 28, 29-37.https://doi.org/10.1016/j.aeolia.2017.06.004 Mahowald, N. M., Kloster, S., Engelstaedter, S., Moore, J. K., Mukhopadhyay, S., McConnell, J. R., Albani, S., Doney, S. C., Bhattacharya, A., Curran, M. A. J., Flanner, M. G., Hoffman, F. M., Lawrence, D. M., Lindsay, K., Mayewski, P. A., Neff, J., Rothenberg, D., Thomas, E., Thornton, P. E., & Zender, C. S. (2010). Observed 20th century desert dust variability: impact on climate and biogeochemistry. Atmospheric Chemistry and Physics, 10, 10875-10893.https://doi.org/10.5194/acp-10-10875-2010 Mirhasani, M., Rostami, N., Bazgir, M., & Tavakoli, M. (2018). An investigation of land-use effect on dust concentration and soil loss in desert areas: a case of Ein Khosh-Dehloran, Ilam. Environmental Erosion Research Journal, 8(1), 1-20. http://dorl.net/dor/20.1001.1.22517812.1397.8.1.3.0. (inPersian) Pi, H., Sharratt, B., & Lei, J. (2017). Atmospheric dust events in central Asia: Relationship to wind, soil type, and land use. Journal of Geophysical Research: Atmospheres, 122(12), 6652-6671. Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., & Gill, T. E. (2002). Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of Geophysics, 40(1), 1002.https://doi.org/10.1029/2000RG000095 Ramaswamy, V., Collins, W., Haywood, J., Lean, J., Mahowald, N., Myhre, G., Naik, V., Shine, K. P., Soden, B., Stenchikov, G., & Storelvmo, T. (2018). Radiative Forcing of Climate: The Historical Evolution of the Radiative Forcing Concept, the Forcing Agents and their Quantification, and Applications. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteorological Monographs, 59, 14.1-14.101.https://doi.org/10.1175/AMSMONOGRAPHS-D-19-0001.1 Rocha-Lima, A., Colarco, P. R., Darmenov, A. S., Nowottnick, E. P., da Silva, A. M., & Oman, L. D. (2024). Investigation of observed dust trends over the Middle East region in NASA Goddard Earth Observing System (GEOS) model simulations. Atmospheric Chemistry and Physics, 24(4), 2443-2464. Shao, Y., Wyrwoll, K. H., Chappell, A., Huang, J., Lin, Z., McTainsh, G. H., ... & Yoon, S. (2011). Dust cycle: An emerging core theme in Earth system science. Aeolian Research, 2(4), 181-204.https://doi.org/10.1016/j.aeolia.2011.02.001 Taheri, F., Forouzani, M., Yazdanpanah, M., & Ajili, A. (2020). How farmers perceive the impact of dust phenomenon on agricultural production activities: A Q-methodology study. Journal of Arid Environments, 173, 104028. Wang, H.; Jia, X.; Li, K.; & Y. Li, )2015(. Horizontal wind erosion flux and potential dust emission in arid and semiarid regions of China: A major source area for East Asia dust storms,Catena, 133, 373–384. Wang, X., Wang, T., Dong, Z., Liu, X., & Qian, G. (2006). Nebkha development and its significance to wind erosion and land degradation in semi-arid northern China. Journal of Arid Environments, 65(1), 129-141.https://doi.org/10.1016/j.jaridenv.2005.06.030 Xi, X., & Sokolik, I. N. (2016). Quantifying the anthropogenic dust emission from agricultural land use and desiccation of the Aral Sea in Central Asia. Journal of Geophysical Research: Atmospheres, 121(20), 12-270. Xu, J., 2006. Sand-dust storms in and around the Ordos Plateau of China as influenced by land use change and desertification, Catena, 65 (3), 279-284. doi: 10. 1016 /j. catena. 2005. 12.6. Yang, L., She, L., Che, Y., He, X., Yang, C., & Feng, Z. (2023). Analysis of Dust Detection Algorithms Based on FY-4A Satellite Data. Applied Sciences, 13(3), 1365. Yarahmadi, J., & Khosroshahi, M. (2024). Analysis of the Trend of the Dust Storm Index in the Lake Uromia Playa. Hydrogeomorphology.
| ||
آمار تعداد مشاهده مقاله: 53 تعداد دریافت فایل اصل مقاله: 58 |