- Abdi, H. (2007). The Kendall rank correlation coefficient. Encyclopedia of measurement and statistics, 2, 508-510.
- Abramowitz, M., & Stegun, I. A. (Eds.). (1968). Handbook of mathematical functions with formulas, graphs, and mathematical tables (Vol. 55). US Government printing office.
- AghaKouchak, A., Farahmand, A., Melton, F.S., Teixeira, J., Anderson, M.C., Wardlow, B.D. and Hain, C.R. (2015). Remote sensing of drought: Progress, challenges and opportunities. Reviews of Geophysics, 53(2), pp.452-480.
- Ahmadalipour, A., Moradkhani, H., Castelletti, A., & Magliocca, N. (2019). Future drought risk in Africa: Integrating vulnerability, climate change, and population growth. Science of the Total Environment, 662, 672-686
- Ahmad, M. M., Yaseen, M., & Saqib, S. E. (2022). Climate change impacts of drought on the livelihood of dryland smallholders: Implications of adaptation challenges. International Journal of Disaster Risk Reduction, 80, 103210.
- Al-Kilani, M. R., Rahbeh, M., Al-Bakri, J., Tadesse, T., & Knutson, C. (2021). Evaluation of remotely sensed precipitation estimates from the NASA POWER project for drought detection over Jordan. Earth Systems and Environment, 5(3), 561-573.
- Bazrafshan, O., Zamani, H., Mozaffari, E., Azhdari, Z., & Shekari, M. (2023). Trivariate risk analysis of meteorological drought in Iran under climate change scenarios. Meteorology and Atmospheric Physics, 135(6), 52.
- Bodghjamali, J., Javanmard, S., & Tajbakhsh, S. (2020). The estimation of type and amount rainfall using TMI Sensor of TRMM Satellite. Journal of Climate Research, 1398(37), 38-56.
- Danandeh Mehr, A., Rikhtehgar Ghiasi, A., Yaseen, Z. M., Sorman, A. U., & Abualigah, L. (2023). A novel intelligent deep learning predictive model for meteorological drought forecasting. Journal of Ambient Intelligence and Humanized Computing, 14(8), 10441-10455.
- de Brito, C.S., da Silva, R.M., Santos, C.A.G., Neto, R.M.B., & Coelho, V.H.R., 2021. Monitoring meteorological drought in a semiarid region using two long-term satellite-estimated rainfall datasets: A case study of the Piranhas River basin, northeastern Brazil. Atmospheric Research, 250, p.105380.
- Dejene, I. N., Wedajo, G. K., Bayissa, Y. A., Abraham, A. M., & Cherinet, K. G. (2023). Satellite rainfall performance evaluation and application to monitor meteorological drought: a case of Omo-Gibe basin, Ethiopia. Natural Hazards, 119(1), 167-201.
- Easterling, D. R. (2012). Global data sets for analysis of climate extremes. In Extremes in a changing climate: detection, analysis and uncertainty (pp. 347-361). Dordrecht: Springer Netherlands.
- Edwards, D. C., & McKee, T. B. (1997). Characteristics of 20th century drought in the United States at multiple time scales.
- Efron, B. (1992). Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics: Methodology and distribution (pp. 569-593). New York, NY: Springer New York.
- Fahimi Nezhad, E., Fallah Ghalhari, G., & Bayatani, F. (2019). Forecasting maximum seasonal temperature using artificial neural networks “Tehran case study”. Asia-pacific journal of atmospheric sciences, 55, 145-153.
- Farahani, H., & Jahansoozi, M. (2022). Analysis of rural households' resilience to drought in Iran, case study: Bajestan County. International Journal of Disaster Risk Reduction, 82, 103331.
- Farahmand, A., & AghaKouchak, A. (2015). A generalized framework for deriving nonparametric standardized drought indicators. Advances in Water Resources, 76, 140-145.
- Fathian, F., Dehghan, Z., Alee, M. M., Vaheddoost, B., Abualigah, L., & Danandeh Mehr, A. (2024). Regional classification of extreme droughts across Iran. Acta Geophysica, 72(5), 3485-3509.
- Ghozat, A., Sharafati, A., & Hosseini, S. A. (2022). Satellite-based monitoring of meteorological drought over different regions of Iran: application of the CHIRPS precipitation product. Environmental Science and Pollution Research, 29(24), 36115-36132.
- Gringorten, I. I. (1963). A plotting rule for extreme probability paper. Journal of Geophysical Research, 68(3), 813-814.
- Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of hydrology, 377(1-2), 80-91.
- Guttman, N. B. (1999). Accepting the standardized precipitation index: a calculation algorithm 1. JAWRA Journal of the American Water Resources Association, 35(2), 311-322.
- Habibi, S. M., & Hourcade, B. (2005). Atlas of Tehran metropolis. Tehran: Urban Processing and Planning Co, 1.
- Hagman, G., Beer, H., Bendz, M., & Wijkman, A. (1984). Prevention better than cure. Report on human and environmental disasters in the Third World. 2.
- Hajimir Rahimi, M., & Feizizade, B. (2007). Validation of TRMM Precipitation and Ground-Based Radar in estimation of precipitation, National Geomatics Conference 86 (GEO86), National Cartographic Center, Tehran, Iran. (In Persian).
- Halwatura, D., McIntyre, N., Lechner, A. M., & Arnold, S. (2017). Capability of meteorological drought indices for detecting soil moisture droughts. Journal of Hydrology: Regional Studies, 12, 396-412.
- Hauke, J., & Kossowski, T. (2011). Comparison of values of Pearson's and Spearman's correlation coefficients on the same sets of data. Quaestiones geographicae, 30(2), 87-93.
- Hayes, M., Svoboda, M., Wall, N., & Widhalm, M. (2011). The Lincoln declaration on drought indices: universal meteorological drought index recommended. Bulletin of the American Meteorological Society, 92(4), 485-488.
- Hu, Y. M., Liang, Z. M., Liu, Y. W., Wang, J., Yao, L., & Ning, Y. (2015). Uncertainty analysis of SPI calculation and drought assessment based on the application of Bootstrap. International Journal of Climatology, 35(8).
- Jain, S. K., & Sudheer, K. P. (2008). Fitting of hydrologic models: a close look at the Nash–Sutcliffe index. Journal of hydrologic engineering, 13(10), 981-986.
- Javanmard, S., Yatagai, A., Nodzu, M. I., BodaghJamali, J., & Kawamoto, H. (2010). Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM_3B42 over Iran. Advances in Geosciences, 25, 119-125.
- Ji, L., & Peters, A. J. (2003). Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote sensing of Environment, 87(1), 85-98.
- Kareem, S., Hamad, Z. J., & Askar, S. (2021). An evaluation of CNN and ANN in prediction weather forecasting: A review. Sustainable Engineering and Innovation, 3(2), 148-159.
- Katipoğlu, O. M., Acar, R., & Şengül, S. (2020). Comparison of meteorological indices for drought monitoring and evaluating: a case study from Euphrates basin, Turkey. Journal of Water and Climate Change, 11(S1), 29-43.
- Khadr, M., Morgenschweis, G., & Schlenkhoff, A. (2009). Analysis of meteorological drought in the Ruhr basin by using the standardized precipitation index. International Journal of Environmental and Ecological Engineering, 3(9), 291-300.
- Khanmohammadi, N., Rezaie, H., & Behmanesh, J. (2022). Investigation of drought trend on the basis of the best obtained drought index. Water Resources Management, 36(4), 1355-1375.
- Kornbrot, D. (2014). Point biserial correlation. Wiley StatsRef: Statistics Reference Online.
- Li, X., Tao, R., & Zhang, K. (2022). Drought Monitoring Based on Remote Sensing. Remote Sensing of Water‐Related Hazards, 149-168.
- Liu, Y. W., Wang, W., Hu, Y. M., & Liang, Z. M. (2014). Drought assessment and uncertainty analysis for Dapoling basin. Natural hazards, 74, 1613-1627.
- Logan, K. E., Brunsell, N. A., Jones, A. R., & Feddema, J. J. (2010). Assessing spatiotemporal variability of drought in the US central plains. Journal of Arid Environments, 74(2), 247-255.
- McKee, T. B., Doesken, N. J., & Kleist, J. (1995, January). Drought monitoring with multiple time scales. Proceedings of the Conference on Applied Climatology.
- Meteorological Organization of Tehran Province. (2018). Detailed report on the rainfall situation in Tehran province during the last five years (2009-2013), 47 pages. (In Persian)
- Mianabadi, A., Salari, K., & Pourmohamad, Y. (2022). Drought monitoring using the long-term CHIRPS precipitation over Southeastern Iran. Applied Water Science, 12(8), 183.
- Mishra, A., Singh, V., & Desai, V. (2009). Drought characterization: a probabilistic approach. Stochastic Environmental Research and Risk Assessment, 23(1), 41-55.
- Mohd Zad, S. N., Zulkafli, Z., & Muharram, F. M. (2018). Satellite rainfall (TRMM 3B42-V7) performance assessment and adjustment over Pahang River Basin, Malaysia. Remote sensing, 10(3), 388.
- Mokhtar, A., Jalali, M., He, H., Al-Ansari, N., Elbeltagi, A., Alsafadi, K., Abdo, H.G., Sammen, S.S., Gyasi-Agyei, Y., & Rodrigo-Comino, J. (2021). Estimation of SPEI meteorological drought using machine learning algorithms. IEEE Access, 9, 65503-65523.
- Naresh Kumar, M., Murthy, C. S., Sesha Sai, M. V. R., & Roy, P. S. (2009). On the use of Standardized Precipitation Index (SPI) for drought intensity assessment. Meteorological Applications: A journal of forecasting, practical applications, training techniques and modelling, 16(3), 381-389.
- Pande, C. B., Costache, R., Sammen, S. S., Noor, R., & Elbeltagi, A. (2023). Combination of data-driven models and best subset regression for predicting the standardized precipitation index (SPI) at the Upper Godavari Basin in India. Theoretical and Applied Climatology, 152(1), 535-558.
- Pandey, V., Srivastava, P. K., Mall, R. K., Munoz-Arriola, F., & Han, D. (2022). Multi-satellite precipitation products for meteorological drought assessment and forecasting in Central India. Geocarto International, 37(7), 1899-1918.
- Pazhanivelan, S., Geethalakshmi, V., Samykannu, V., Kumaraperumal, R., Kancheti, M., Kaliaperumal, R., ... & Yadav, M. K. (2023). Evaluation of SPI and rainfall departure based on multi-satellite precipitation products for meteorological drought monitoring in Tamil Nadu. Water, 15(7), 1435.
- Pourzand, F., & Noy, I. (2022). Catastrophic droughts and their economic consequences. In Oxford Research Encyclopedia of Environmental Science.
- Quiring, S. M. (2009). Developing objective operational definitions for monitoring drought. 425 Journal of Applied Meteorology and Climatology 48 (6), 1217-1229.
- Ragab, R., & Prudhomme, C. (2002). Sw-soil and Water: climate change and water resources management in arid and semi-arid regions: prospective and challenges for the 21st century. Biosystems engineering, 81(1), pp.3-34.
- Rahman, K. U., Hussain, A., Ejaz, N., Shang, S., Balkhair, K. S., Khan, K. U. J., ... & Rehman, N. U. (2023). Analysis of production and economic losses of cash crops under variable drought: A case study from Punjab province of Pakistan. International Journal of Disaster Risk Reduction, 85, 103507.
- Razmi, R., Sotoudeh, F., Ghane, M., & Ostad-Ali-Askari, K. (2022). Temporal–spatial analysis of drought and wet periods: case study of a wet region in Northwestern Iran (East Azerbaijan, West Azerbaijan, Ardebil and Zanjan provinces). Applied Water Science, 12(11), 251.
- Sakellariou, S., Spiliotopoulos, M., Alpanakis, N., Faraslis, I., Sidiropoulos, P., Tziatzios, G. A., ... & Dercas, N. (2024). Spatiotemporal Drought Assessment Based on Gridded Standardized Precipitation Index (SPI) in Vulnerable Agroecosystems. Sustainability, 16(3), 1240.
- Santos, J.F., Pulido‐Calvo, I., & Portela, M.M. (2010). Spatial and temporal variability of droughts in Portugal. Water Resources Research, 46(3).
- Savari, M., Damaneh, H. E., & Damaneh, H. E. (2023). Effective factors to increase rural households' resilience under drought conditions in Iran. International Journal of Disaster Risk Reduction, 90, 103644.
- Sharafi, S., Ghaleni, M. M., & Sadeghi, S. (2022). Spatial and temporal analysis of drought in various climates across Iran using the Standardized Precipitation Index (SPI). Arabian Journal of Geosciences, 15(14), 1279.
- Sheffield, J., Wood, E.F., & Roderick, M.L. (2012). Little change in global drought over the past 60 years. Nature, 491(7424), 435-438.
- Shirmohammadi, B., Moradi, H., Moosavi, V., Semiromi, M. T., & Zeinali, A. (2013). Forecasting of meteorological drought using Wavelet-ANFIS hybrid model for different time steps (case study: southeastern part of east Azerbaijan province, Iran). Natural hazards, 69, 389-402.
- Steinemann, A. C., & Cavalcanti, L. F. (2006). Developing multiple indicators and triggers for drought plans. Journal of Water Resources Planning and Management, 132(3), 164-174.
- Suliman, A.H.A., Awchi, T.A., Al-Mola, M., & Shahid, S. (2020). Evaluation of remotely sensed precipitation sources for drought assessment in Semi-Arid Iraq. Atmospheric Research, 242, 105007.
- McKee, T. B., Doesken, N. J., & Kleist, J. (1993, January). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, 17(22), 179-183.
- Thenkabail, P. S., & Gamage, M. S. D. N. (2004). The use of remote sensing data for drought assessment and monitoring in Southwest Asia, (Vol. 85). Iwmi.
- Tsesmelis, D. E., Vasilakou, C. G., Kalogeropoulos, K., Stathopoulos, N., Alexandris, S. G., Zervas, E., ... & Karavitis, C. A. (2022). Drought assessment using the standardized precipitation index (SPI) in GIS environment in Greece. In Computers in earth and environmental sciences (pp. 619-633). Elsevier.
- Vergni, L., Di Lena, B., Todisco, F., & Mannocchi, F. (2017). Uncertainty in drought monitoring by the Standardized Precipitation Index: the case study of the Abruzzo region (central Italy). Theoretical and applied climatology, 128, 13-26.
- Wang, L., Zhang, Y., Chen, X., Liu, Y., Wang, S., & Wang, L. (2024). Ensemble learning based on remote sensing data for monitoring agricultural drought in major winter wheat-producing areas of China. Progress in Physical Geography: Earth and Environment, 48(2), 171-190.
- Ward, E., Buytaert, W., Peaver, L., & Wheater, H. (2011). Evaluation of precipitation products over complex mountainous terrain: A water resources perspective. Advances in water resources, 34(10), 1222-1231.
- Wilhite, D.A., & Glantz, M.H. (1985). Understanding: the drought phenomenon: the role of definitions. Water international, 10(3), 111-120.
|