
تعداد نشریات | 163 |
تعداد شمارهها | 6,760 |
تعداد مقالات | 72,808 |
تعداد مشاهده مقاله | 131,594,217 |
تعداد دریافت فایل اصل مقاله | 103,394,504 |
اثر پروبیوتیک باسیلوس کواگولانز DSM 32016 بر عملکرد رشد، قابلیت هضم مواد مغذی، شاخصهای سلامت، متابولیتهای خون و وضعیت ایمنی در گوسالههای هلشتاین شیرخوار | ||
علوم دامی ایران | ||
دوره 56، شماره 2، تیر 1404، صفحه 351-368 اصل مقاله (1.54 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijas.2024.377864.654017 | ||
نویسندگان | ||
محبوب محمدی1؛ سعید زین الدینی* 2؛ احمد زارع شحنه2؛ مهدی گنج خانلو2؛ مهدی ژندی2 | ||
1گروه علوم دامی، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی دانشگاه، تهران، کرج، ایران | ||
2گروه علوم دامی، دانشکده کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
این آزمایش، به منظور بررسی اثرات پروبیوتیک باسیلوس کواگولانز DSM 32016 بر عملکرد رشد، قابلیت هضم مواد مغذی، شاخصهای سلامت و متابولیتهای سرمی گوسالههای هلشتاین انجام شد. شصت رأس گوساله هلشتاین از روز 4 تا 73 روزگی به دو گروه شاهد: بدون مصرف پروبیوتیک و پروبیوتیک باسیلوس کواگولانز: 600 میلیگرم در هر کیلوگرم خوراک و 600 میلیگرم در هر کیلوگرم شیر اختصاص داده شدند. در دو مرحله 1 تا 50 و 51 تا 70 روزگی عملکرد رشد، قابلیت هضم مواد مغذی، شاخصهای سلامت، متابولیتهای خون و وضعیت ایمنی مورد ارزیابی قرار گرفت. در مقایسه با گروه شاهد، مصرف ماده خشک، میانگین افزایش وزن روزانه، میانگین بازده غذایی و تغییرات قد، تفاوت معنیداری نداشت، در حالی که قابلیت هضم مواد مغذی تحت تأثیر مصرف پروبیوتیک قرار گرفت (05/0P <). گوسالههایی که پروبیوتیک دریافت کردند، قابلیت هضم NDF پایینتری را نسبت به گوسالههای گروه شاهد نشان دادند، در حالی که قابلیت هضم NFC افزایش یافت. امتیاز قوام مدفوع و وضعیت سلامت نسبت به گروه شاهد در هر دو دوره بهبود یافت (05/0P <). روزهای با تب در هر دو دوره و دمای رکتال در طول روز 51 تا 70 کاهش یافت (05/0P <). در مقایسه با گروه شاهد، در گروه تیماری پروبیوتیک سطح گلوکز، بتا هیدروکسیبوتیرات و لنفوسیت افزایش و سطح نوتروفیل و نسبت نوتروفیل به لنفوسیت در طول روز 51 تا 70 کاهش یافت (05/0P <). استفاده از پروبیوتیک باسیلوس کواگولانز سبب افزایش قابلیت هضم NFC و بهبود امتیاز قوام مدفوع و شاخصهای سلامت و افزایش سطح لنفوسیت و ایمنی میگردد.. | ||
کلیدواژهها | ||
گوساله؛ پروبیوتیک؛ باسیلوس کواگولانز و رشد | ||
عنوان مقاله [English] | ||
Evaluation of probiotic Bacillus coagulans DSM 32016 effect on growth performance, nutrient digestibility, health indices, blood metabolites, and immune status of Holstein dairy calves | ||
نویسندگان [English] | ||
Mahbub Mohammadi1؛ Saeed Zeinoaldini2؛ ahmad zareh2؛ Mahdi Ganjkhanlou2؛ Mahdi Zhandi2 | ||
1Department of Animal Science, Faculty of Agriculture, School of Agriculture and Natural Resources, University of Tehran, karaj, Iran | ||
2Department of Animal Science, Faculty of Agriculture, School of Agriculture and Natural Resources, University of Tehran, karaj, Iran | ||
چکیده [English] | ||
The present experiment was designed to investigate the effects of probiotic Bacillus coagulans DSM 32016 on growth performance, nutrient digestibility, health indicators and serum metabolites of Holstein calves. Sixty Holstein calves, with from day 4 to day 73 of age were divided to the following two treatments as controls: no probiotic supplementation, probiotic Bacillus coagulans: 600 mg per kg of feed + 600 mg per kg of milk. was evaluated in two phases, 1 to 50 days and 51 to 70 days, factors as growth performance, nutrient digestibility, health indices, blood metabolites, and immune status. Compared to the control, dry matter consumption, average daily gain (ADG), feed efficiency, and Height change did not differ significantly while the digestibility of nutrients was affected by probiotics (P< 0.05). Calves that received the probiotic, NDF digestibility had decreased compared to the control (P<0.05), while NFC increased with probiotic supplementation (P< 0.05). Health indicators and fecal score were more favorable with probiotic supplement than the control in both periods (P< 0.05). However, days with fever in both periods, and rectal temperature on days 51 to 70 were significantly reduced. Compared to the control, the level of glucose, beta-hydroxybutyrate and lymphocytes increased, and the level of neutrophils and the ratio of neutrophils to lymphocytes decreased during days 51 to 70 with the probiotic supplement. Therefore, the use of probiotic Bacillus coagulans DSM 32016 in milk and feed increases the digestibility of NFC and improves the fecal score and health indicators and increases the level of lymphocytes and immunity. | ||
کلیدواژهها [English] | ||
Calves, Probiotic, Bacillus coagulans, Growth | ||
مراجع | ||
RERERENCES Abdallah, A., Elemba, E., Zhong, Q., & Sun, Z. (2020). Gastrointestinal interaction between dietary amino acids and gut microbiota: with special emphasis on host nutrition. Current Protein and Peptide Science, 21(8), 785-798. Abe, F., Ishibashi, N., & Shimamura, S. (1995). Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. Journal of dairy science, 78(12), 2838-2846. Agazzi, A., Tirloni, E., Stella, S., Maroccolo, S., Ripamonti, B., Bersani, C., ni Savoini, G. (2014). Effects of species-specific probiotic addition to milk replacer on calf health and performance during the first month of life. Annals of Animal Science, 14(1), 101. Akagawa, Y., Ohnishi, Y., Takaya, M., & Watanabe, Y. (2016). Safety assessment of probiotic bacteria, Bacillus coagulans strain SANK70258, in rats. Fundamental Toxicological Sciences, 3(6), 243-250. Alimirzaei, M., Alijoo, Y., Dehghan-Banadaky, M., & Eslamizad, M. (2020). The effects of feeding high or low milk levels in early life on growth performance, fecal microbial count and metabolic and inflammatory status of Holstein female calves. Animal, 14(2), 303-311. Apas, A. L., Arena, M. E., Colombo, S., & Gonzalez, S. N. (2015). Probiotic administration modifies the milk fatty acid profile, intestinal morphology, and intestinal fatty acid profile of goats. Journal of dairy science, 98(1), 47-54. Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., & Gil, A. (2012). Probiotic mechanisms of action. Annals of Nutrition and Metabolism, 61(2), 160-174. Boonmar, S., Bangtrakulnonth, A., Pornruangwong, S., Samosornsuk, S., Kaneko, K.-i., & Ogawa, M. (1998). Significant increase in antibiotic resistance of Salmonella isolates from human beings and chicken meat in Thailand. Veterinary Microbiology, 62(1), 73-80. Cao, J., Yu, Z., Liu, W., Zhao, J., Zhang, H., Zhai, Q., & Chen, W. (2020). Probiotic characteristics of Bacillus coagulans and associated implications for human health and diseases. Journal of Functional Foods, 64, 103643. Cavazzoni, V., Adami, A., & Castrovilli, C. (1998). Performance of broiler chickens supplemented with Bacillus coagulans as probiotic. British poultry science, 39(4), 526-529. Chase, C. C. (2018). Enteric immunity: Happy gut, healthy animal. Veterinary Clinics: Food Animal Practice, 34(1), 1-18. Diao, Q., Zhang, R., & Fu, T. (2019). Review of strategies to promote rumen development in calves. Animals, 9(8), 490. Du, R., Jiao, S., Dai, Y., An, J., Lv, J., Yan, X., Han, B. (2018). Probiotic Bacillus amyloliquefaciens C-1 improves growth performance, stimulates GH/IGF-1, and regulates the gut microbiota of growth-retarded beef calves. Frontiers in microbiology, 9, 2006. Fuller, R. (1989). Probiotics in man and animals. The Journal of applied bacteriology, 66(5), 365-378. Galvão, K. N., Santos, J. E., Coscioni, A., Villaseñor, M., Sischo, W. M., & Berge, A. C. B. (2005). Effect of feeding live yeast products to calves with failure of passive transfer on performance and patterns of antibiotic resistance in fecal Escherichia coli. Reproduction Nutrition Development, 45(4), 427-440. Geiger, A., Ward, S., Williams, C., Rude, B., Cabrera, C., Kalestch, K., & Voelz, B. (2014). Effects of increasing protein and energy in the milk replacer with or without direct-fed microbial supplementation on growth and performance of preweaned Holstein calves. Journal of dairy science, 97(11), 7212-7219. Guo, X., Li, D., Lu, W., Piao, X., & Chen, X. (2006). Screening of Bacillus strains as potential probiotics and subsequent confirmation of the in vivo effectiveness of Bacillus subtilis MA139 in pigs. Antonie van leeuwenhoek, 90, 139-146. Hammon, H., Liermann, W., Frieten, D., & Koch, C. (2020). Importance of colostrum supply and milk feeding intensity on gastrointestinal and systemic development in calves. Animal, 14, s133-s143. Harris, T., Liang, Y., Sharon, K., Sellers, M., Yoon, I., Scott, M., Ballou, M. (2017). Influence of Saccharomyces cerevisiae fermentation products, SmartCare in milk replacer and Original XPC in calf starter, on the performance and health of preweaned Holstein calves challenged with Salmonella enterica serotype Typhimurium. Journal of dairy science, 100(9), 7154-7164. Hung, A. T., Lin, S.-Y., Yang, T.-Y., Chou, C.-K., Liu, H.-C., Lu, J.-J., Lien, T.-F. (2012). Effects of Bacillus coagulans ATCC 7050 on growth performance, intestinal morphology, and microflora composition in broiler chickens. Animal Production Science, 52(9), 874-879. Hyronimus, Marrec, L., & Urdaci. (1998). Coagulin, a bacteriocin‐like inhibitory substance produced by Bacillus coagulans I4. Journal of applied microbiology, 85(1), 42-50. Khajehdizaj, F. P., Taghizadeh, A., & Nobari, B. B. (2014). Effect of feeding microwave irradiated sorghum grain on nutrient utilization, rumen fermentation and serum metabolites in sheep. Livestock Science, 167, 161-170. Kodali, V. P., & Sen, R. (2008). Antioxidant and free radical scavenging activities of an exopolysaccharide from a probiotic bacterium. Biotechnology Journal: Healthcare Nutrition Technology, 3(2), 245-251. Le Marrec, C., Hyronimus, B., Bressollier, P., Verneuil, B., & Urdaci, M. C. (2000). Biochemical and genetic characterization of coagulin, a new antilisterial bacteriocin in the pediocin family of bacteriocins, produced by Bacillus coagulans I4. Applied and environmental microbiology, 66(12), 5213-5220. Lesmeister, K., & Heinrichs, A. (2004). Effects of corn processing on growth characteristics, rumen development, and rumen parameters in neonatal dairy calves. Journal of dairy science, 87(10), 3439-3450. Lonkar, P., Harne, S., Kalorey, D., & Kurkure, N. (2005). Isolation, in vitro antibacterial activity, bacterial sensitivity and plasmid profile of Lactobacilli. Asian-australasian journal of animal sciences, 18(9), 1336-1342. McDonnell, R. P., O’Doherty, J. V., Earley, B., Clarke, A. M., & Kenny, D. A. (2019). Effect of supplementation with n-3 polyunsaturated fatty acids and/or β-glucans on performance, feeding behaviour and immune status of Holstein Friesian bull calves during the pre-and post-weaning periods. Journal of animal science and biotechnology, 10, 1-17. McGuirk, S. (2013). Calf Health Scoring Chart. University of Wisconsin, School of Veterinary Medicine. Mingmongkolchai, S., & Panbangred, W. (2018). Bacillus probiotics: an alternative to antibiotics for livestock production. Journal of applied microbiology, 124(6), 1334-1346. Morrison, S., Dawson, S., & Carson, A. (2010). The effects of mannan oligosaccharide and Streptococcus faecium addition to milk replacer on calf health and performance. Livestock Science, 131(2-3), 292-296. Nagashima, K., Yasokawa, D., Abe, K., Nakagawa, R., Kitamura, T., Miura, T., & Kogawa, S. (2010). Effect of a Lactobacillus species on incidence of diarrhea in calves and change of the microflora associated with growth. Bioscience and microflora, 29(2), 97-110. Novak, K., Davis, E., Wehnes, C., Shields, D., Coalson, J., Smith, A., & Rehberger, T. (2012). Effect of supplementation with an electrolyte containing a Bacillus-based direct-fed microbial on immune development in dairy calves. Research in Veterinary Science, 92(3), 427-434. Oikonomou, G., Teixeira, A. G. V., Foditsch, C., Bicalho, M. L., Machado, V. S., & Bicalho, R. C. (2013). Fecal microbial diversity in pre-weaned dairy calves as described by pyrosequencing of metagenomic 16S rDNA. Associations of Faecalibacterium species with health and growth. PloS one, 8(4), e63157. Parhizkar, S., Zaghari, M., & Zhandi, M. (2022). Beneficial effect of Bacillus coagulans DSM 32016 on performance and productivity of broiler breeders. Journal of Livestock Science and Technologies, 10(1), 31-40. Pinos-Rodríguez, J., González, S., Mendoza, G., Bárcena, R., Cobos, M., Hernández, A., & Ortega, M. (2002). Effect of exogenous fibrolytic enzyme on ruminal fermentation and digestibility of alfalfa and rye-grass hay fed to lambs. Journal of Animal Science, 80(11), 3016-3020. Pinto, M. G. V., Gómez, M. R., Seifert, S., Watzl, B., Holzapfel, W. H., & Franz, C. M. (2009). Lactobacilli stimulate the innate immune response and modulate the TLR expression of HT29 intestinal epithelial cells in vitro. International journal of food microbiology, 133(1-2), 86-93. Riazi, S., Wirawan, R., Badmaev, V., & Chikindas, M. (2009). Characterization of lactosporin, a novel antimicrobial protein produced by Bacillus coagulans ATCC 7050. Journal of applied microbiology, 106(4), 1370-1377. Ripamonti, B., Agazzi, A., Baldi, A., Balzaretti, C., Bersani, C., Pirani, S., Stenico, A. (2009). Administration of Bacillus coagulans in calves: recovery from faecal samples and evaluation of functional aspects of spores. Veterinary Research Communications, 33, 991-1001. Sánchez, B., Delgado, S., Blanco‐Míguez, A., Lourenço, A., Gueimonde, M., & Margolles, A. (2017). Probiotics, gut microbiota, and their influence on host health and disease. Molecular nutrition & food research, 61(1), 1600240. SAS Institute 2013. SAS/STAT 9.1 User’s Guide. SAS Inst., Inc., Cary, NC. Schofield, B. J., Lachner, N., Le, O. T., McNeill, D. M., Dart, P., Ouwerkerk, D., Klieve, A. V. (2018). Beneficial changes in rumen bacterial community profile in sheep and dairy calves as a result of feeding the probiotic Bacillus amyloliquefaciens H57. Journal of applied microbiology, 124(3), 855-866. Sun, T., Miao, H., Zhang, C., Wang, Y., Liu, S., Jiao, P., Huang, Z. (2022). Effect of dietary Bacillus coagulans on the performance and intestinal microbiota of weaned piglets. Animal, 16(7), 100561 Swanson, J., & Morrow-Tesch, J. (2001). Cattle transport: Historical, research, and future perspectives. Journal of Animal Science, 79(suppl_E), E102-E109. Timmerman, H. M., Mulder, L., Everts, H., van Espen, D. C., van der Wal, E., Klaassen, G., Beynen, A. C. (2005). Health and growth of veal calves fed milk replacers with or without probiotics. J Dairy Sci, 88(6), 2154-2165. jds.S0022-0302(05)72891-5 Van Keulen, J., & Young, B. (1977). Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. Journal of Animal Science, 44(2), 282-287. Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci, 74(10), 3583-3597. jds.S0022-0302(91)78551-2 Von Konigslow, T., Renaud, D., Duffield, T., Higginson, V., & Kelton, D. (2019). Validation of an automated cell counter to determine leukocyte differential counts in neonatal Holstein calves. Journal of dairy science, 102(8), 7445-7452. Wagner, D., Quinonez, J., & Bush, L. (1990). The effect of corn-or wheat-based diets and yeast culture on performance, ruminal pH, and volatile fatty acids in dairy calves. Agri-Practice, 11(2), 7-12. World Health Organization. Antibacterial agents in clinical development. Geneva; 2017. Xie, S., Zhang, H., Matjeke, R. S., Zhao, J., & Yu, Q. (2022). Bacillus coagulans protect against Salmonella enteritidis-induced intestinal mucosal damage in young chickens by inducing the differentiation of goblet cells. Poultry Science, 101(3), 101639. Xu, H., Huang, W., Hou, Q., Kwok, L.-y., Sun, Z., Ma, H., Zhang, H. (2017). The effects of probiotics administration on the milk production, milk components and fecal bacteria microbiota of dairy cows. Science Bulletin, 62(11), 767-774. Zhang, L., Jiang, X., Liu, X., Zhao, X., Liu, S., Li, Y., & Zhang, Y. (2019). Growth, health, rumen fermentation, and bacterial community of Holstein calves fed Lactobacillus rhamnosus GG during the preweaning stage. Journal of Animal Science, 97(6), 2598-2608. Zhang, Y., Wu, S., Ma, J., Xia, Y., Ai, X., & Sun, J. (2015). Bacterial protein AvrA stabilizes intestinal epithelial tight junctions via blockage of the C-Jun N-terminal kinase pathway. Tissue Barriers, 3(1-2), e972849. Zhou, X., Wang, Y., Gu, Q., & Li, W. (2010). Effect of dietary probiotic, Bacillus coagulans, on growth performance, chemical composition, and meat quality of Guangxi Yellow chicken. Poultry Science, 89(3), 588-593. Zhou, Y., Zeng, Z., Xu, Y., Ying, J., Wang, B., Majeed, M., Li, W. (2020). Application of Bacillus coagulans in animal husbandry and its underlying mechanisms. Animals, 10(3), 454. | ||
آمار تعداد مشاهده مقاله: 134 تعداد دریافت فایل اصل مقاله: 31 |