- Behrens, T., & Diepenbrock, W. (2006). Using Digital Image Analysis to Describe Canopies of Winter Oilseed Rape (Brassica napus L.) during Vegetative Developmental Stages. Journal of Agronomy and Crop Science, 192(4), 295–302. https://doi.org/10.1111/J.1439-037X.2006.00211.X
- Bonan, G. B. (1993). Importance of leaf area index and forest type when estimating photosynthesis in boreal forests. Remote Sensing of Environment, 43(3), 303-314. https://doi.org/10.1016/0034-4257(93)90072-6
- Bryson, R. J., Paveley, N. D., Clark, W. S., Sylvester-Bradley, R., & Scott, R. K. (1997). Use of in-field measurements of green leaf area and incident radiation to estimate the effects of yellow rust epidemics on the yield of winter wheat. European Journal of Agronomy, 7(1-3), 53-62. https://doi.org/10.1016/S1161-0301(97)00025-7
- Cardille, J. A., Saah, D., Crowley, M. A., & Clinton, N. E. (2024). Cloud-Based Remote Sensing with Google Earth Engine. In Cloud-Based Remote Sensing with Google Earth Engine. https://doi.org/10.1007/978-3-031-26588-4
- Chang, C. C., & Lin, C. J. (2011). LIBSVM. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3). https://doi.org/10.1145/1961189.1961199
- Chebrolu, N., Labe, T., & Stachniss, C. (2018). Robust long-term registration of UAV images of crop fields for precision agriculture. IEEE Robotics and Automation Letters, 3(4), 3097-3104. https://doi.org/10.1109/LRA.2018.2849603
- CHEN, J. M., & BLACK, T. A. (1992). Defining leaf area index for non-flat leaves. Plant, Cell & Environment, 15(4), 421-429. https://doi.org/10.1111/J.1365-3040.1992.TB00992.X
- Coy, A., Rankine, D., Taylor, M., Nielsen, D. C., & Cohen, J. (2016). Increasing the accuracy and automation of fractional vegetation cover estimation from digital photographs. Remote Sensing, 8(7), 21-25. https://doi.org/10.3390/rs8070474
- De la Casa, A., Ovando, G., Bressanini, L., Martínez, J., Díaz, G., & Miranda, C. (2018). Soybean crop coverage estimation from NDVI images with different spatial resolution to evaluate yield variability in a plot. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 531-547. https://doi.org/10.1016/J.ISPRSJPRS.2018.10.018
- Drewry, D.T., Kumar, P., Long, S., Bernacchi, C., Liang, X.Z., & Sivapalan, M. (2010). Ecohydrological responses of dense canopies to environmental variability: 1. Interplay between vertical structure and photosynthetic pathway. Journal of Geophysical Research: Biogeosciences, 115(G4). https://doi.org/10.1029/2010JG001340
- Eslami, A., Anvari, S., Karimi, N., & Mohammadi, S. (2022). Application of pixel-based and object-based approaches for LULC mapping in Jiroft region, S.E. Iran. Ecopersia, 10(1), 71-83.
- Friha, O., Ferrag, M. A., Shu, L., Maglaras, L., & Wang, X. (2021). Internet of Things for the Future of Smart Agriculture: A Comprehensive Survey of Emerging Technologies. IEEE/CAA Journal of Automatica Sinica, 8(4), 718-752. https://doi.org/10.1109/JAS.2021.1003925
- Gooyandeh, M., Mirlatifi, S. M., & Akbari, M. (2019). Estimating Leaf Area Index of a corn silage field Using a Modified Commercial Digital Camera. Iranian Journal of Irrigation & Drainage, 12(6), 1396-1406. https://idj.iaid.ir/article_85906_en.html
- Haddadi, S. R., Soltani, M. Assessment of canopy cover fraction in sugar beet field using unmanned aerial vehicle imagery and different image segmentation methods. Iranian Journal of Soil and Water Research, 2024; 55(7), 1199-1215. doi: 10.22059/ijswr.2024.371136.669647
- Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2016). A Practical Guide to Support Vector Classification. https://doi.org/10.1177/02632760022050997
- Inoue, Y. (2020). Satellite- and drone-based remote sensing of crops and soils for smart farming – a review. Soil Science and Plant Nutrition, 66(6), 798-810. https://doi.org/10.1080/00380768.2020.1738899
- Lee, K.-J., & Lee, B.-W. (2011). Estimating canopy cover from color digital camera image of rice field. Journal of Crop Science and Biotechnology, 14(2), 151-155. https://doi.org/10.1007/s12892-011-0029-z
- Li, Y., Chen, D., Walker, C. N., & Angus, J. F. (2010). Estimating the nitrogen status of crops using a digital camera. Field Crops Research, 118(3), 221-227. https://doi.org/10.1016/J.FCR.2010.05.011
- Lottes, P., Khanna, R., Pfeifer, J., Siegwart, R., & Stachniss, C. (2017). UAV-based crop and weed classification for smart farming. Proceedings-IEEE International Conference on Robotics and Automation, 3024-3031. https://doi.org/10.1109/ICRA.2017.7989347
- Manfreda, S., McCabe, M. F., Miller, P. E., Lucas, R., Madrigal, V. P., Mallinis, G., Dor, E. Ben, Helman, D., Estes, L., Ciraolo, G., Müllerová, J., Tauro, F., de Lima, M. I., de Lima, J. L. M. P., Maltese, A., Frances, F., Caylor, K., Kohv, M., Perks, M., … & Toth, B. (2018). On the use of unmanned aerial systems for environmental monitoring. Remote Sensing, 10(4). https://doi.org/10.3390/rs10040641
- Miraki, M., Sohrabi, H., & Fatehi, P. (2022). Citrus trees identification and trees stress detection based on spectral data derived from UAVs. Research in Horticultural Sciences, 1(1), 27-40. doi: 10.22092/rhsj.2022.127815
- Pan, G., Li, F. M., & Sun, G. J. (2007). Digital camera based measurement of crop cover for wheat yield prediction. International Geoscience and Remote Sensing Symposium (IGARSS), 797-800. https://doi.org/10.1109/IGARSS.2007.4422917
- Panday, U. S., Pratihast, A. K., Aryal, J., & Kayastha, R. B. (2020). A review on drone-based data solutions for cereal crops. Drones, 4(3), 1-29. https://doi.org/10.3390/drones4030041
- Patanè, C. (2011). Leaf Area Index, Leaf Transpiration and Stomatal Conductance as Affected by Soil Water Deficit and VPD in Processing Tomato in Semi Arid Mediterranean Climate. Journal of Agronomy and Crop Science, 197(3), 165-176. https://doi.org/10.1111/J.1439-037X.2010.00454.X
- Purevdorj, T. S., Tateishi, R., Ishiyama, T., & Honda, Y. (1998). Relationships between percent vegetation cover and vegetation indices. IJRS, 19(18), 3519-3535. https://doi.org/10.1080/014311698213795
- Qu, Y., Meng, J., Wan, H., & Li, Y. (2016). Preliminary study on integrated wireless smart terminals for leaf area index measurement. Computers and Electronics in Agriculture, 129, 56-65. https://doi.org/10.1016/J.COMPAG.2016.09.011
- Radoglou-Grammatikis, P., Sarigiannidis, P., Lagkas, T., & Moscholios, I. (2020). A compilation of UAV applications for precision agriculture. Computer Networks, 172, 107148. https://doi.org/10.1016/J.COMNET.2020.107148
- Rejeb, A., Abdollahi, A., Rejeb, K., & Treiblmaier, H. (2022). Drones in agriculture: A review and bibliometric analysis. In Computers and Electronics in Agriculture (Vol. 198). https://doi.org/10.1016/j.compag.2022.107017
- Richards, J. A., & Jia, X. (1999). Remote Sensing Digital Image Analysis. In Remote Sensing Digital Image Analysis. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-03978-6
- Richardson, M. D., Karcher, D. E., & Purcell, L. C. (2001). Quantifying Turfgrass Cover Using Digital Image Analysis. Crop Science, 41(6), 1884-1888. https://doi.org/10.2135/CROPSCI2001.1884
- Rumelhart, D. E., & McClelland, J. L. (1987). Learning Internal Representations by Error Propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition: Foundations (pp. 318-362). MIT Press. http://ieeexplore.ieee.org/document/6302929
- Running, S. W., & Coughlan, J. C. (1988). A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecological Modelling, 42(2), 125-154. https://doi.org/10.1016/0304-3800 (88)90112-3
- Shi, J., Wang, J., & Xu, Y. (2012). Object-Based Change Detection Using Georeferenced Uav Images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-1/(September), 177-182. https://doi.org/10.5194/isprsarchives-xxxviii-1-c22-177-2011
- Soltani, M. (2024). Estimating maize canopy cover percent by means of image processing algorithms. Water and Irrigation Management, 14(1), 111-122. doi: 10.22059/jwim.2023.364331.1098
- Steduto, P., Hsiao, T. C., Fereres, E., & Raes, D. (2012). Crop yield response to water. FAO Irrigation and Drainage Paper No.66, (October 2012), 505.
- Su, J., Coombes, M., Liu, C., Guo, L., & Chen, W. H. (2018). Wheat Drought Assessment by Remote Sensing Imagery Using Unmanned Aerial Vehicle. Chinese Control Conference, CCC, 2018-July, 10340-10344. https://doi.org/10.23919/ChiCC.2018.8484005
- Vose, J. M., Vose, J. M., Dougherty, P. M., Dougherty, P. M., Long, J. N., Long, J. N., Smith, F. W., Smith, F. W., Gholz, H. L., Gholz, H. L., Curran, P. J., & Curran, P. J. (1994). Factors influencing the amount and distribution of leaf area of pine stands. Ecological Bulletins, 43(43), 102-114.
- Wu, F., Lin, C., & Weng, R. (2004). Probability Estimates for Multi-Class Support Vector Machines by Pairwise Coupling. Journal of Machine Learning Research, 5, 975-1005.
- Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture 2012 13:6, 13(6), 693-712. https://doi.org/10.1007/S11119-012-9274-5
|