![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 162 |
تعداد شمارهها | 6,578 |
تعداد مقالات | 71,076 |
تعداد مشاهده مقاله | 125,704,242 |
تعداد دریافت فایل اصل مقاله | 98,937,695 |
Toxic Metals’ Accumulation and Elemental Characterization in Mollusc and Crustacean Species’ Shells Found Along the Coastline of Pakistan | ||
Pollution | ||
مقاله 10، دوره 11، شماره 2، اردیبهشت 2025، صفحه 349-368 اصل مقاله (3.61 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2024.378903.2446 | ||
نویسندگان | ||
Shah Rafi Ud Din1؛ Nida Ali* 2؛ Noshab Qamar2؛ Maria Ashfaq2؛ Muhammad Asad Khan Tanoli2؛ Tehseen Ahmed2؛ Mohsin Ali2، 3؛ Syed Wasi Haider4 | ||
1Department of Environmental Science, Federal Urdu University of Arts, Science & Technology, 75300, Karachi, Pakistan | ||
2Department of Chemistry, University of Karachi, 75270, Karachi, Pakistan | ||
3Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, 420008, Kazan, Russian Federation | ||
4Institute of Space Science and Technology, University of Karachi, 75270, Karachi, Pakistan | ||
چکیده | ||
Pakistan has the coastline of 990 km, rapid industrialization and economic growth have resulted in increased water pollution in the coastal areas. Present study characterized natural and xenobiotic elements in the shells of molluscs and crustaceans found along the coastline of Pakistan. The objective of this study was to highlight the scope of these shells to be used as bio-indicators or nutrient source, instead of getting waste after seasonal washed up along the coastline.These washed up shell were collected from 09 locations in year the 2023 and were analyzed through scanning electron microscopy energy dispersive x-ray spectroscopy and atomic absorption spectrometry. This study presented a comprehensive elemental and morphological analysis of the selected species’ shells, which hasn’t been reported earlier. The mass percentages of elements were compared by one-way ANOVA, among species. Results suggested that these shells can also be used as bio-indicator for those elements whose toxicity is usually ignored, such as Al. Silicon and aluminum showed similar trend among species in mass percentages i.e., Mussel>Crab>Scallop>Clam>Shrimp. Variation in levels of elements in natural shell composition may influence the attachment of xenobiotic metals. While, this study also reflected shells that could be used as a nutrient source. Water pH was found to be an influencing factor on the solubility of elements. The morphological analysis of shells helped in understanding the transport of organic and inorganic materials between the body and shell. | ||
کلیدواژهها | ||
Crustacean؛ Mollusc؛ Morphology؛ Shells؛ Xenobiotic | ||
مراجع | ||
Abdullah, A. T. (2014). Light structure as biomarker for heavy metal bioaccumulation and toxicity in molluscan gastropods. (In A. Mendez-Vilar (Ed.),Microscopy: Advances in scientific research and education (pp. 330-334). Spain: Formatex) Abidin, N. A. Z., Kormin, F., Abidin, N. K. Z., Anuar, N. A. F. M., & Bakar, M. F. A. (2020). The potential of insects as alternative sources of chitin: an overview on the chemical method of extraction from various sources. Int. J. Mol. Sci., 21(14), 4978˗4986. Ahmed, A. A. (2022). Mineral and amino profile of crab (Sudanonaonautesaubryi). Food Chem. Adv.,1, 100070. Ahsanullah, M., Negilski, D. S., & Mobly, M. C. (1981). Toxicity of zinc, cadmium and copper to the shrimp CallianassaAustraliensis accumulation of metals. Mar. Biol., 64, 311-316. Ali, H., Khan, E., &IkramIlahi (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. Hindawi J. Chem., Article 6730305. Retrieved October 24, 2023, from https://doi.org/10.1155/2019/6730305. Ali, M. H. and Dinshaw, R. C. (Eds.) (2016). A handbook on Pakistan’s coastal and marine resources. (Pakistan: MFF Pakistan) Ali, S., Begum, F., Hussain, S. A., Khan, A. S., Ali, H., Khan, T., Raza, G., Ali, K., & Karim, R. (2014). Biomonitoring of heavy metals availability in the marine environment of Karachi, Pakistan, using oysters (Crassostrea Species). Inter. J. Biosci., 4, 249-257. Andersen, O. (1984). Chelation of cadmium. Environ. Health Perspect., 54, 249-266. Aqeel, M., Khalid, N., Nazir, A., Irshad, M. K., Hakami, O., Basahi, M. A., & Noman, A. (2023). Foliar application of silver nanoparticles mitigated nutritional and biochemical perturbations in chilli pepper fertigated with domestic wastewater. Plant Physiol. Biochem. 194, 470–479. Aselage, S. N. T. (2011) Exposure routes of copper and their effects on the great pond snail (LymnaeaStagnalis). Dissertation, University of Michigan, Michigan. ATSDR (Agency for Toxic Substances and Disease Registry) (2008). Toxicological profile for aluminum. Retrieved December 10, 2023, from https://www.atsdr.cdc.gov/toxprofiles/tp22.pdf. Baig, N., & Askari, M. U. (2024). Marine pollution in the maritime zones of Pakistan: A green theory perspective. Ann. Hum. Soc. Sci., 5(1), 159-172. Bioteau, R. M., Till, A. R., Bundy, R. M., Hawco, N. J., Mckenna, A. M., Barbeau, K. A., Bruland, K. W., Saito, M., & Repeta, D. J. (2016). Structural characterization of natural nickel and copper binding ligands along the US geotraces eastern pacific zonal transect. Front. Mar. Sci., 3, 1-16. Bressler, J. P., Olivi, L., Cheong, J. H., Kim, Y., & Bannona, D. (2004). Divalent metal transporter 1 in lead and cadmium transport. Ann. NY Acad. Sci., 1012, 142-52. Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. Cocker, K. M., Evans, D. E., & Hodson, M. J. (1998). The amelioration of aluminium toxicity by silicon in wheat (Triticum Aestivun L) malate exudation as evidence for an in planta mechanism. Planta, 204, 318-323. Dąbrowska, J., Sobota, M., Świąder, M., Borowski, P., Moryl, A., Stodolak, R., Kucharczak, E., Zięba, Z., & Kazak, J. K. (2021). Marine waste—sources, fate, risks, challenges and research needs. Int. J. Environ. Res. Public Health, 18(2), 433. Dietrich, D. R. (1988) Aluminium toxicity to salmonids at low pH. Dissertation, Institute of Toxicology, Zürich, Switzerland. Dietrich, D., & Schlatter, C. (1989). Aluminium toxicity to rainbow trout at low pH.Aquat. Toxicol. 15(3), 197-212. Exley, C., Schneider, C., & Doucet, F. C. (2002). The reaction of aluminium with silicic acid in acidic solution: an important mechanism in controlling the biological availability of aluminium. Coord. Chem. Rev., 228, 127-135. Fawell, K. J. (1993). The impact of inorganic chemicals on water quality and health. Ann. Ist. Super Sanita, 2, 293-303. Ferreira, A. G., Machado, A. L. S., & Zalmon, I. R. (2005). Temporal and spatial variation on heavy metal concentrations in the oyster ostreaequestris on the northern coast of Rio De Janeiro State, Brazil. Braz. J. Biol., 65, 67-76. Gensemer, R. W., & Playle, R. C. (1999). The bioavailability and toxicity of aluminum in aquatic environments. Crit. Rev. Environ. Sci. Technol., 29(4), 315-450. Gidde, M. R., Bhalerao, A. R., & Tariq, H. (2012). Occurrence of aluminium concentration in surface water samples from different areas of Pune city. Intern. J. Emerg. Tech. Advan. Eng., 2(7), 215-219. Gopan, A., Anandan, R.,Maiti, M. K., Lalappan, S., & Devanand, T. N. (2020). Nutritional profiling of kiddi shrimp, parapenaeopsisstylifera (H. Milne Edwards, 1837) collected from southwest coast of India.J. Exp. Zool., 23(2), 1943-1949. Hamester, M. R. R., Balzer, P. S., & Becker, D. (2012). Characterization of calcium carbonate obtained from oyster and mussel shells and incorporation in polypropylene. Mater. Res., 15(2), 204-208. Handy, R. D. (1993). The accumulation of dietary aluminium by rainbow trout, Oncorhynchus mykiss, at high exposure concentrations. J. Fish Biol., 42, 603-606. Herrmann, J., & Frick, K. (1995). Do stream invertebrates accumulate aluminium at low pH conditions? Water Air Soil Pollut., 85, 407-412. Hornstrom, E., Harbom, A., Edberg, F., & Andren, C. (1995). The influence of pH on aluminium toxicity in the phytoplankton species Monoraphidiumdybowskii and M. griffithii. Water Air Soil Pollut., 85(2), 817-822. John, A. T., & Mary, J. (2016). Chemical composition of the edible oyster shell Crassostrea Madrasensis (Preston 1916). J. Mar. Biol. Aquac., 2, 1-4. Kamal, T., Tanoli, M. A. K., Mumtaz, M., Ali, N., & Ayub, S. (2015). Bioconcentration potential studies of heavy metals in FenneropenaeusPenicillatus (Jaira or Red tail shrimp) along the littoral states of Karachi city. J. Basic Appl. Sci., 11, 611-618. Khalid, N., Aqeel, M., Noman, A., Khan, S. M., & Akhter, N. (2021). Interactions and effects of microplastics with heavy metals in aquatic and terrestrial environments. Environ. Pollut., 290(1), 118104. Lide, D. R. (Ed.) (2000). CRC handbook of chemistry and physics, 81st edition. (Florida: CRC Press LLC) Madkour, H. A. (2005). Distribution and relationships of heavy metals in the giant clam (Tridacna Maxima) and associatedsediments from different sites in the Egyptianred sea coast. Egypt. J. Aquat. Res., 31, 45-59. Mahurpawar, M. (2015). Effects of heavy metals on human health. Soc. Issues Environ. Probl., 3, 1-7. Mallatt, J. (1985). Fish gill structural changes induced by toxicants and other irritants: A statistical review. Can. J. Fish. Aquat., Sci. 42, 630-648. Mititelu, M., Dogaru, E., Nicolescu, T. O., Hîncu, L., Bancescu, A., & Ionita, C. (2008). Heavy metals analysis in some molluscs shells from Black Sea. Sci. Study Res., 9, 195-198. Nazir, K., Yongtong, M., Memon, K. H., & Kalhoro, M. A. (2016). A study on the assessment of fisheries resources in Pakistan and its potential to support marine economy. Indian J. Geo-Mar. Sci., 45(9), 1181-1187. Nergis, Y., Butt, A. J., & Sharif, M. (2021). Assessment of marine coastal water pollution from Karachi harbour Pakistan. Int. J. Econ. Env. Geol., 12(2), 27-31. Noman, M., Mu Y. T., Mohsin M., & Mehak A. (2018). An economic analysis of fisheries sector of Balochistan, Pakistan: current status and future potential. Indian J. Geo Mar. Sci., 47(9), 1727-1734. Olivares, M., &Uauy, R. (2005). Essential nutrients in drinking water. World Health Organization, Geneva, 41-60. Phillips, D. J. H. (1976). The common mussel Mytilus Eludis as indicator of pollution by zinc, cadmium, lead and copper. Relationship of metals in the mussel to those discharged by industry. Mar. Biol., 38, 71-80. Poston, H. A. (1991). Effect of dietary aluminum on growth and composition of young Atlantic salmon. Prog. Fish-Cult., 53(1), 7-10. Psomadakis, P. N., Osmany, H. B. & Moazzam, M. (2015). Field identification guide to the living marine resources of Pakistan. Retrieved October 2, 2023, from https://www.fao.org/3/i4932e/i4932e.pdf. Ramzan, M., Sarwar, S., Ahmad, M. Z., Ahmed, R. Z., Hussain, T., & Hussain, I. (2024). Phytoremediation of heavy metal – contaminated soil of Lyari River using bioenergy crops. S. Afr. J. Bot., 167, 663-670. Ravichandran, S., Rameshkumar, G., & Prince, R. (2009). Biochemical composition of shell and flesh of the Indian white shrimp Penaeus Indicus (H. Milne Edwards 1837). Am.-Eurasian J. Sci. Res., 4, 191-194. Reckendorf, A., Siebert, U., Parmentier, E., and Das, K. Eds. (2023). Chemical pollution and diseases of marine mammals. (In D., Brennecke, K., Knickmeier, I., Pawliczka, U., Siebert, & M. Wahlberg, (Eds.), Marine Mammals (pp 63-78). Switzerland: Springer Cham) Saher, N. U., Siddiqui, A. S., Kanwal, N., Narejo, A. H., Gul, A., Gondal, M. A. and Abbass, F. I. Eds. (2019). An overview of pollution dynamics along the Pakistan coast with special reference of nutrient pollution. (In D. Pei & M. Junaid (Eds.), Marine Ecology: Current and Future Developments (pp.136-172). Netherlands: Bentham Science) Shrimanker, I. and Bhattarai, S. (2023).Electrolytes.(United States: StatPearls) Silva, A. L. O. D., Barrocas, P. R. G., Jacob, S. D. C., & Moreira, J. C. (2005). Dietry intake and health effects of selected toxic elements. Braz. J. Plant Physiol., 17, 79-93. Soetan, K. O., Olaiya, C. O., &Oyewol, O. E. (2010). The importance of mineral elements for humans domestic animals and plants. Afr. J. Food Sci., 4, 200-222. Soundarapandian, P., Varadharajan, D., & Sivasubramanian, C. (2013). Mineral composition of edible crab, charybdis natator herbst (Crustacea: Decapoda). J. Bioanal. Biomed., 5, 99-101. Sparling, D. W., & Lowe, T. P. (1996). Environmental hazards of aluminum to plants, invertebrates, fish, and wildlife. Rev. Environ. Contam. Toxicol., 145, 1-127. Stankovic, S., Jovic, M., Stankovic, A. R. and Katsikas, L. Eds. (2011). Heavy metals in seafood mussels risks for human health. (In E. Lichtfouse, J. Schwarzbauer, & D. Robert (Eds.), Environmental chemistry for a sustainable worldenvironmental chemistry for a sustainable world (pp. 311-373). Netherlands: Springer Link) Sunday, A. D., Augustina, D. O., Zebedee, B., & Olajide, O. O. (2013). Analyses of heavy metals in water and sediment of Bindare stream, Chikaji industrial area Sabon Gari. Inter. J. Sci. Res. Environ. Sci., 1, 115-121. Tiwari, S., Tripathi, I. P., & Tiwari, H. L. (2013). Effects of lead on environment. Inter. J. Emerg. Res. Manag. Technol., 2, 1-5. Vazquez, P. Q., Sigee, D. C., & White, K. N. (2010). Bioavailability and toxicity of aluminium in a model planktonic food chain (Chlamydomonas–Daphnia) at neutral pH.Limnologica, 40, 269-277. Wang, N., Ivey, C. D., Brunson, E. L., Cleveland, D., Ingersoll, C. G., Stubblefield, W. A., & Cardwell, A. S. (2018). Acute and chronic toxicity of aluminum to a unionid mussel (LampsilisSiliquoidea) and an amphipod (Hyalella Azteca) in water-only exposures. Environ. Toxicol. Chem., 37, 61-69. Wang, W. X. and Lu, G. Eds. (2017). Heavy metals in bivalve mollusks. (In A. Cartus, & D. Schrenk (Eds.), Chemical contaminants and residues in food (pp. 553-594). (Hong Kong: Woodhead Publishing) Yarsan, E., &Yipel, M. (2013). The important terms of marine pollution “biomarkers and biomonitoring, bioaccumulation, bioconcentration, biomagnification”. J. Mol. Biomark. Diagn., S1, 003. | ||
آمار تعداد مشاهده مقاله: 36 تعداد دریافت فایل اصل مقاله: 29 |