![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 162 |
تعداد شمارهها | 6,578 |
تعداد مقالات | 71,076 |
تعداد مشاهده مقاله | 125,705,186 |
تعداد دریافت فایل اصل مقاله | 98,939,365 |
Utilizing Bioflocculants Produced by Bacteria to Remediate Oil Contaminated Water | ||
Pollution | ||
مقاله 16، دوره 11، شماره 2، اردیبهشت 2025، صفحه 440-453 اصل مقاله (2.36 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2024.380806.2507 | ||
نویسندگان | ||
Assala Mohammed Al-Khafaji؛ Asia Fadhile Al-mansoory؛ Nassir Abdullah Alyousif* | ||
Department of Ecology, College of Science, University of Basrah, Iraq | ||
چکیده | ||
Bioflocculants are extracellular polymeric substances (EPS) synthesized and released by microorganisms including bacteria, algae and fungi with many applications for wastewater treatment. The current study aimed to produce bioflocculant compounds from bacteria and evaluate their efficiency in the treatment of polluted water with hydrocarbon. The bacteria were isolated from wastewater and oil-contaminated soils in Basrah city, Iraq. The bacteria used in the present study isolated and identified in a previous study, these isolates as Aeromonas simiae and Exiguobacterium profundum. Both Aeromonas simiae and Exiguobacterium profundum demonstrated high efficacy in the remediation of wastewater from the Najibiya plant achieving up to 88% turbidity reduction under optimal conditions. Aeromonas simiae showed varied performance in removing Total Dissolved Solids (TDS), Total Suspended Solids (TSS), and Total Petroleum Hydrocabons (TPHs), with the best results at 43%, 57%, and 86.04% respectively, under specific pH and dosage conditions. Similarly, Exiguobacterium profundum showed excellent results, particularly in removing TDS, TSS and TPHs, reaching up to 52%, 82% and 94.23% respectively. Exiguobacterium profundum was highly effective bacterium in removing TPHs from the wastewater of the AL- Najibiya plant reaching 94.23%. The effectiveness of both strains varied with pH levels and dosages, highlighting their potential in targeted wastewater remediation applications. | ||
کلیدواژهها | ||
Bioflocculants؛ Flocculation؛ Turbidity؛ TPHs؛ Wastewater remediation | ||
مراجع | ||
Adnan, O., Abidin, Z. Z., Idris, A., Kamarudin, S., & Al-Qubaisi, M. S. (2017). A novel biocoagulant agent from mushroom chitosan as water and wastewater therapy. Environmental Science and Pollution Research, 24: 20104-20112. https://doi.org/10.1007/s11356-017-9560-x Agarwal, M., Srinivasan, R., & Mishra, A. (2001). Study on flocculation efficiency of okra gum in sewage waste water. Macromolecular Materials and Engineering, 286(9): 560-563. https://doi.org/10.1002/1439-2054(20010901)286 Ajao, V., Bruning, H.; Rijnaarts, H., & Temmink, H. (2018). Natural flocculants from fresh and saline wastewater: comparative properties and flocculation performances. Chemical Engineering Journal, 349: 622-632. https://doi.org/10.1016/j.cej.2018.05.123 Al-Baldawi, I. A., Abdullah, S. R. S., Suja, F., Anuar, N., & Idris, M. (2013). Phytotoxicity test of Scirpus grossus on diesel-contaminated water using a subsurface flow system. Ecological engineering. 54, 49–56. http://dx.doi.org/10.1016/j.ecoleng.2013.01.016. Al-khafaji, A. M., Al-mansoory, A. F., & Alyousif, N. A. (2023). Isolation, screening and molecular identification of bioflocculants–producing bacteria. Biodiversitas Journal of Biological Diversity, 24(8): 4410-4417. DOI: 10.13057/biodiv/d240822 APHA. (2005). Standard methods for the examination of water and wastewater, 21st ed. American Public Health Association, American Water Works Ang, W. L., & Mohammad, A. W. (2020). State of the art and sustainability of natural coagulants in water and wastewater treatment. Journal of Cleaner production, 262: 121267. https://doi.org/10.1016/j.jclepro.2020.121267 Buthelezi, S. P.; Olaniran, A. O., & Pillay, B. (2009). Turbidity and microbial load removal from river water using bioflocculants from indigenous bacteria isolated from wastewater in South Africa. African Journal of Biotechnology, 8(14). Chaillan, F., Le Flèche, A., Bury, E., Phantavong, Y., Grimont, P., Saliot, A., & Oudot, J. (2004). Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Research in microbiology, 155(7):587–595. https://doi.org/10.1016/j.resmic.2004.04.006 Daud, Z., Nasir, N., & Awang, H. (2013). Treatment of Biodiesel Wastewater by Coagulation and Flocculation using Polyaluminum Chloride. Australian Journal of Basic and Applied Sciences, 7(8):258- 262. http://www.ajbasweb.com/ajbas/2013/June/258-262 Desta, W. M., & Bote, M. E. (2021). Wastewater treatment using a natural coagulant (Moringa oleifera seeds): optimization through response surface methodology. Heliyon, 7(11): 1-9. https://doi.org/10.1016/j.heliyon. 2021. e08451 Dlamini, N. G., Basson, A. K., & Pullabhotla, V. S. R. (2019). Biosynthesis and characterization of copper nanoparticles using a bioflocculant extracted from Alcaligenis faecalis HCB2. Advanced Science, Engineering and Medicine, 11(11): 1064-1070. https://doi.org/10.1166/asem.2019.2448 Guo, J., Yu, J., Xin, X., Zou, C., Cheng, Q., Yang, H., & Nengzi, L. (2015). Characterization and flocculation mechanism of a bioflocculant from hydrolyzate of rice stover. Bioresource Technology, 177: 393-397. https://doi.org/10.1016/j.biortech.2014.11.066 Gong, W. X., Wang, S. G., Sun, X. F., Liu, X. W., Yue, Q. Y., & Gao, B. Y. (2008). Bioflocculant production by culture of Serratia ficaria and its application in wastewater treatment. Bioresource technology, 99(11): 4668-4674. https://doi.org/10.1016/j.biortech.2007.09.077 Huang, J., Huang, Z. L., Zhou, J. X., Li, C. Z., Yang, Z. H., Ruan, M., Li, H., Zhang, X., Wu, Z-J., Qin, X-L., Hu, J-H., & Zhou, K. (2019). Enhancement of heavy metals removal by microbial flocculant produced by Paenibacillus polymyxa combined with an insufficient hydroxide precipitation. Chemical Engineering Journal, 374: 880-894. https://doi.org/10.1016/j.cej.2019.06.009 Joshi, N., Rathod, M., Vyas, D., Kumar, R., & Mody, K. (2019). Multiple pollutants removal from industrial wastewaters using a novel bioflocculant produced by Bacillus licheniformis NJ3. Environmental Progress & Sustainable Energy, 38(s1), S306-S314. https://doi.org/10.1002/ep.13027 Kim, S. H., Moon, B. H., & Lee, H. I. (2001). Effects of pH and dosage on pollutant removal and floc structure during coagulation. Microchemical Journal, 68 (2-3): 197-203. https://doi.org/10.1016/S0026-265X(00)00146-6 Kurniawan, S. B., Abdullah, S. R. S., Imron, M. F., Said, N. S. M., Ismail, N. I., Hasan, H. A., Othman, A. R., & Purwanti, I. F. (2020). Challenges and opportunities of biocoagulant/bioflocculant application for drinking water and wastewater treatment and its potential for sludge recovery. International journal of environmental research and public health, 17(24): 9312. https://doi.org/10.3390/ijerph17249312 Li, O., Lu, C., Liu, A., Zhu, L., Wang, P. M., Qian, C. D., & Wu, X. C. (2013). Optimization and characterization of polysaccharide-based bioflocculant produced by Paenibacillus elgii B69 and its application in wastewater treatment. Bioresource technology, 134, 87-93. https://doi.org/10.1016/j. biortech.2013.02.013 Lian, B., Chen, Y., Zhao, J., Teng, H. H., Zhu, L., & Yuan, S. (2008). Microbial flocculation by Bacillus mucilaginosus: applications and mechanisms. Bioresource Technology, 99 (11): 4825-4831. https://doi.org/ 10.1016/j.biortech.2007.09.045 Ma, J., Shi, J., Ding, L., Zhang, H., Zhou, S., Wang, Q., & Fu, K. (2018). Removal of emulsified oil from water using hydrophobic modified cationic polyacrylamide flocculants synthesized from low-pressure UV initiation. Separation and Purification Technology, 197, 407-417. https://doi.org/10.1016/j.seppur.2018.01.036 Mathias, D., Hammantola, S., & Ishaku, G. (2017). Isolation and characterization of bioflocculant-producing bacteria from wastewater at Jimeta, Adamawa 336 State. Journal of Advances Biology and Biotechnology, 15(1), 1-7. DOI: 10.9734/JABB/2017/36148. Mensah-Akutteh, H., Buamah, R., Wiafe, S., & Nyarko, K. B. (2022). Optimizing coagulation–flocculation processes with aluminium coagulation using response surface methods. Applied Water Science, 12(8), 188. https://doi.org/10.1007/s13201-022-01708-1 Naidoo, S., & Olaniran, A. O. (2014). Treated wastewater effluent as a source of microbial pollution of surface water resources. International journal of environmental research and public health, 11(1), 249-270. https://doi.org/10.3390/ijerph110100249 Ngema, S. S., Basson, A. K., & Maliehe, T. S. (2020). Synthesis, characterization and application of polyacrylamide grafted bioflocculant. Physics and Chemistry of the Earth, Parts A/B/C, 115, 102821. https://doi.org/10.1016/j.pce.2019.102821 Okaiyeto, K., Nwodo, U. U., Mabinya, L. V., & Okoh, A. I. (2014). Evaluation of the flocculation potential and characterization of bioflocculant produced by Micrococcus sp. Leo. Applied biochemistry and microbiology, 50, 601-608. https://doi.org/10.1134/S000368381406012X Okaiyeto, K., Nwodo, U. U., Mabinya, L. V., & Okoh, A. I. (2015). Bacillus toyonensis strain AEMREG6, a bacterium isolated from South African marine environment sediment samples produces a glycoprotein bioflocculant. Molecules, 20(3), 5239-5259. https://doi.org/10.3390/ Molecules20035239 Patil, S. V., Patil, C. D., Salunke, B. K., Salunkhe, R. B., Bathe, G. A., & Patil, D. M. (2011). Studies on characterization of bioflocculant exopolysaccharide of Azotobacter indicus and its potential for wastewater treatment. Applied biochemistry and biotechnology, 163, 463-472. DOI: 10.1007/s12010-010-9054-5 Pu, L., Zeng, Y. J., Xu, P., Li, F. Z., Zong, M. H., Yang, J. G., & Lou, W. Y. (2020). Using a novel polysaccharide BM2 produced by Bacillus megaterium strain PL8 as an efficient bioflocculant for wastewater treatment. International Journal of Biological Macromolecules, 162: 374-384. https://doi.org/10.1016/j.ijbiomac.2020.06.167 Renault, F., Sancey, B., Badot, P. M., & Crini, G. (2009). Chitosan for coagulation/flocculation processes–an eco-friendly approach. European Polymer Journal, 45(5), 1337-1348. https://doi.org/10.1016/j.eurpolymj. 2008.12.027 Siddharth, T., Sridhar, P., Vinila, V., & Tyagi, R. D. (2021). Environmental applications of microbial extracellular polymeric substance (EPS): A review. Journal of Environmental Management, 287: 112307. https://doi.org/10.1016/j.jenvman.2021.112307 Tremblay, L., Alaoui, G., & Léger, M.N. (2011). Characterization of aquatic particles by direct FTIR analysis of filters and quantification of elemental and molecular compositions. Environmental science & technology, 45 (22): 9671–9679. https://doi.org/10.1021/es202607n Xiong, Y., Wang, Y., Yu, Y., Li, Q., Wang, H., & Chen, R. C. (2010). Production and characterization of a novel bioflocculant from Bacillus licheniformis. Applied and environmental microbiology, 76: 2778–82. https://doi.org/10.1128/AEM.02558-09 Zhang, Z., Xia, S., Wang, X., Yang, A., Xu, B., Chen, L., & Leonard, D. (2009). A novel biosorbent for dye removal: Extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1. Journal of Hazardous Materials, 163(1), 279-284. https://doi.org/10.1016/j.jhazmat.2008.06.096 | ||
آمار تعداد مشاهده مقاله: 58 تعداد دریافت فایل اصل مقاله: 18 |