![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 162 |
تعداد شمارهها | 6,578 |
تعداد مقالات | 71,076 |
تعداد مشاهده مقاله | 125,704,970 |
تعداد دریافت فایل اصل مقاله | 98,939,003 |
Pollution and Potential Ecological Risk Evaluation of Heavy Metals and Arsenic in Surface Marine Sediments of the Coastal Vostok Bay (Peter the Great Bay, Sea of Japan, Russia) | ||
Pollution | ||
مقاله 22، دوره 11، شماره 2، اردیبهشت 2025، صفحه 510-524 اصل مقاله (1.35 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2024.381938.2546 | ||
نویسندگان | ||
Marina Mazur* 1؛ Elena Zhuravel2؛ Lidia Kovekovdova2 | ||
1A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, P.O.Box 690041, Vladivostok, Russia | ||
2Institute of the World Ocean, Far Eastern Federal University, P.O.Box 690922, Vladivostok, Russia | ||
چکیده | ||
The pollution and potential toxicity of heavy metals (Cu, Cd, Pb, Zn, Ni and Co) and As in the surface bottom marine sediments of the coastal Vostok Bay in 2015 and 2020 were analyzed. Pollution and ecological risk indices were calculated by comparing the concentrations obtained with background, permissible levels and sediment quality standards (SQGs). Maximum concentrations of Cu (37.64±0.88 µg/g), Cd (0.25±0.03 µg/g), Pb (123.73±5.39 µg/g), Zn (162.58±10.31 µg/g), Ni (29.50±1.01 µg/g), Co (5.00±0.23 µg/g) and As (5.24±0.23 µg/g) were detected in the industrialized area of Gaydamak cove in the samples of 2015. Sediments from this area were characterized by moderate pollution and low level of potential toxicity for marine hydrobionts based on the calculation of mCd and TRI. The general trend of decrease in the content of analyzed pollutants in sediments is noted in 2020. Maximum content of Cu (16.17±0.38µg/g), Cd (0.27±0.03µg/g), Pb (58.62±2.55µg/g), Zn (83.14±5.27µg/g), Ni (5.81±0.2µg/g) and Co (5.00±0.23µg/g) was observed in the area of Gaydamak cove as well as in 2015. Low levels of contamination and no potential toxic effects were noted. The highest concentration of As (14.32±0.83 µg/g) was detected in sediments of Srednyaya Cove. This fact is of particular concern as this cove is part of the Integrated Marine Reserve and is characterized by high biodiversity. The results of this study allow us to conclude that the use of individual and complex indices of pollution and potential ecological risk is an effective tool for assessing the ecological status of bottom sediments. | ||
کلیدواژهها | ||
Arsenic؛ Contamination؛ Heavy Metals؛ potential Toxicity | ||
مراجع | ||
Abdu, N., Abdullahi, A.A., & Abdulkadir, A. (2017). Heavy metals and soil microbes. Environ. Chem. Lett., 15(1); 65-84. doi: 10.1007/s10311-016-0587-x. Ardila, P.A.R., Alonso, R. Á., Valsero, J.J.D., Garcia, R.M., Cabrera, F. Á., Lamas-Cosio, E., & Laforet, S.D. (2023). Assessment of heavy metal pollution in marine sediments from southwest of Mallorca island, Spain. Environ. Sci. Pollut. Res., 30; 16852-16866. doi: 10.1007/s11356-022-25014-0. Ardila, P.A.R., Alonso, R. Á., Cabrera, F. Á., Valsero, J.J.D., Garcia, R.M., Lamas-Cosio, E., Oceguera-Vargas, I., & DelValls, A. (2024). Assessment and Review of Heavy Metals Pollution in Sediments of the Mediterranean Sea. Appl. Sci., 14(4); 1435. doi:10.3390/app14041435. Barysheva, V.S., Chernova, E.N., & Patrusheva, O.V. (2019). Pollution of the marine environment of the Vostok Bay of the Sea of Japan by organic matter (2016-2018). Vestnik FEB RAS., 204(2); 87-94. (In Russ.). doi: 10.25808/08697698.2019.204.2.010. Brady, J.P., Ayoko, G.A., Martens, W.N., & Goonetilleke, A. (2014). Enrichment, distribution and sources of heavy metals in the sediments of Deception Bay, Queensland, Australia. Mar Pollut Bull., 81(1); 248-55. doi: 10.1016/j.marpolbul.2014.01.031. Buruaem, L.M., de Castro, Í.B., Hortellani, M.A., Taniguchi S., Fillmann, G., Sasaki, S.T., Petti, M.A.V., Sarkis, J.E.S., Bícego, M.C., Maranho, L.A., Davanso, M.B., Nonato, E.F., Cesar, A., Costa-Lotufo, L.V., & Abessa, D.M.S. (2013). Integrated quality assessment of sediments from harbour areas in Santos-São Vicente Estuarine System, Southern Brazil. Estuar. Coast. Shelf Sci., 130; 179-189. doi: 10.1016/j.ecss.2013.06.006. Chernova, E.N., & Kozhenkova, S.I. (2020). Spatial assessment of metal pollution in Peter the Great Bay (Sea of Japan) using the brown alga Sargassum miyabei. Oceanology, 60(1); 49-56. doi: 10.1134/S0001437020010051 Chiarelli, R., & Roccheri, M. (2014). Marine Invertebrates as Bioindicators of Heavy Metal Pollution. Open J. Met., 4; 93-106. doi: 10.4236/ojmetal.2014.44011. Cunha, D., Muylaert, S., Nascimento, M., Felix, L., de Andrade, J.J.D., Silva, R., Bila, D., & da Fonseca, E.M. (2021). Concentration and toxicity assessment of contaminants in sediments of the Itaipu–Piratininga lagoonal system, Southeastern Brazil. Reg. Stud. Mar. Sci., 46; 101873. doi:10.1016/j.rsma.2021.101873. Choi, K.Y., Kim, S.H., Hong, G.H., & Chon, H.T. (2012). Distributions of heavy metals in the sediments of South Korean harbors. Environ. Geochem. Health., 34; 71-82. doi: 10.1007/s10653-011-9413-3. Ding, X., Ye, S., Laws, E.A., Mozdzer, T.J., Yuan, H., Zhao, G., Yang, S., He, L., & Wang, J. (2019). The concentration distribution and pollution assessment of heavy metals in surface sediments of the Bohai Bay, China. Mar. Pollut. Bull., 149; 110497. doi: 10.1016/j.marpolbul.2019.110497 Dolganov, S. M., & Tyurin, A. N. (2014). Marine Reserve “Zaliv Vostok”. Biodiversity and Environment of Far East Reserves, 1; 9-24. Gaiko, L.A. (2017). Hydrometeorological regime of Vostok Bay (Sea of Japan): monograph Vladivostok: TOI DVO RAS., 229. (In Russ.). Galysheva, Y. A. (2004). Macrobenthos communities of sublittoral sublittoral of the Vostok Bay of the Japanese Sea under anthropogenic impact. Russ. J. Mar. Biol., 30(6); 423-431. (In Russ.). Interstate standard 12536-2014. (2015). Soils. Methods of laboratory granulometric (grain-size) and microaggregate distribution. Moskow: Standartinform, 24. Grigoryeva N.I., & Kashenko S.D. (2010). Study on interannual and seasonal variations of thermohaline conditions in the Vostok Bay (Peter the Great Bay, Japan Sea). Izv. TINRO., 162; 242-255. (In Russ.). Grigorieva, N.I., Zhuravel, E.V., & Mazur, A.A. (2020). Seasonal changes in water quality in Vostok Bay (Peter the Great Bay, Sea of Japan). Water resour., 47(2), 162–169. doi: 10.1134/S0097807820020062 Huang, F.W., Xu, Y., Tan, Z.H., Wu, Z.B., Xu, H., Shen, L.L., Xu, X., Han, Q.G., Guo, H., & Hu, Z.L. (2018). Assessment of pollutions and identification of sources of heavy metals in sediments from west coast of Shenzhen. China. Environ. Sci. Pollut. Res., 25; 3647-3656. doi: 10.1007/s11356-017-0362-y. Jafarabadi, A.R., Bakhtiyari, A.R., Toosi, A.S., & Jadot, C. (2017). Spatial distribution, ecological and health risk assessment of heavy metals in marine surface sediments and coastal seawaters of fringing coral reefs of the Persian Gulf, Iran. Chemosphere, 185; 1090-1111. doi:10.1016/j.chemosphere.2017.07.110. Jeong, H., Byeon, E., Kim, D.H., Maszczyk, P., & Lee, J.S. (2023). Heavy metals and metalloid in aquatic invertebrates: A review of single/mixed forms, combination with other pollutants, and environmental factors. Mar. Pollut. Bull., 191; 114959. doi: 10.1016/j.marpolbul.2023.114959. Kantserova, N. P., Lysenko, L. A., Bakhmet, I. N., & Nemova, N. N. (2016). Effect of cadmium ions on intracellular calcium-dependent proteinases of the mussel Mytilis edulis L. Transactions of the Karelian Research Centre of the RAS., 11; 113-120. (In Russ.). Kartavtsev, Yu. F., Amachaeva, E. Yu., & Nikiforov, S. M. (2001). Concentrations of Heavy Metals in Soft Tissues of the Gastropod Nucella heyseana in the Vicinity of Vladivostok and in the Vostok Bay Reserve. Russ. J. Mar. Biol., 27(3); 184-187. doi: 10.1023/A:1016725804433. Khristoforova, N. K., Naumov, Y. A., & Arzamastsev, I. S. (2004). Heavy metals in bottom sediments of Vostok Bay (Sea of Japan). Izv. TINRO., 136; 278-289. (In Russ.) Khristoforova, N.K., Boychenko, T.V., & Kobzar, A.D. (2020). Hydrochemical and microbiological assessment of the current state of Vostok Bay waters. Vestnik FEB RAS., 2; 64-72. (In Russ.). Khristoforova, N.K., Lazaryuk, A.Y., Zhuravel, E.V., Boychenko, T.V., & Emelyanov, A.A. (2023). Vostok Bay: interseasonal changes in hydrologic-hydrochemical and microbiological parameters. Izv. TINRO. 203(4); 906-924. (In Russ.). doi: 10.26428/1606-9919-2023-203-906-924. Kovekovdova, L. T., & Simokon, M. V. (2004). Trends of changes in chemical-ecological situation in coastal water areas of Primorye. Toxic elements in bottom sediments and hydrobionts. Izv. TINRO., 137; 310-320. (In Russ.). Kozhenkova, S. I. (2008). Retrospective analysis of the marine flora of the Vostok Bay of the Sea of Japan. Russ. J. Mar. Biol. 34(3); 159-174. (In Russ.). Kozhenkova, S.I., Chernova, E.N., & Shulkin, V.M. (2006). Micronutrient composition of the green alga Ulva fenestrata from the Peter the Great Bay of the Sea of Japan. Russ. J. Mar. Biol., 32(5); 346–352. doi: 10.1134/S1063074019030027. Lakshmanna, B., Jayaraju, N., Sreenivasulu, G., Lakshmi Prasad, T., Nagalakshmi, K., Pramod Kumar, M., Madakka, M., & Praveena, B. (2023). Heavy metals distribution in the bottom sediments of Nizampatnam Bay-Lankevanidibba Coast, East Coast of India. J. Trace Elem. Min., 6; 100092. doi: 10.1016/j.jtemin.2023.100092 Li, Y., Duanp, Z., Liu, G., Kalla, P., Scheidt, D., & Cai, Y. (2015). Evaluation of the Possible Sources and Controlling Factors of Toxic Metals/Metalloids in the Florida Everglades and Their Potential Risk of Exposure. Environ. Sci. Technol., 49; 9714-9723. doi: 10.1021/acs.est.5b01638. Liao, J., Cui, X., Feng, H., & Yan, S. (2022). Environmental Background Values and Ecological Risk Assessment of Heavy Metals in Watershed Sediments: A Comparison of Assessment Methods. Water, 14; 51. doi:10.3390/w14010051. Ling, S., Junaidi, A., Mohd-Harun, A., & Baba, M. (2023). Heavy metal pollution assessment in marine sediments in the Northwest coast of Sabah, Malaysia. China Geology, 6; 580-593. doi:10.31035/cg2022079. Lim, Y.C., Albarico F.P.J.B., Chen, C.F, Chen, C.W., & Dong, C.D. (2023). Pollution sources and ecological risks of potentially toxic metals in sediments from a multi-functional Hsingda Harbor in southwestern Taiwan. Reg. Stud. Mar. Sci., 58; 102780. doi: 10.1016/j.rsma.2022.102780. Luo, M., Zhanga, Y., Liab, H., Hu, W., Xiao, K., Yub, S., Zhengb, Ch., & Wangb, X. (2021). Pollution assessment and sources of dissolved heavy metals in coastal water of a highly urbanized coastal area: the role of groundwater discharge. Sci Total Environ., 807; 151070. doi: 10. 1016/j. scito tenv. MacDonald, D.D., Carr, R.S., Eckenrod, D., Greening, H., Grabe, S., Ingersoll, C., Janicki, S., Janicki, T., Lindskoog, R.A., Long, E.R., Pribble, R., Sloane, G., & Smorong, D.E. (2004). Development, evaluation, and application of sediment quality targets for assessing and managing contaminated sediments in Tampa Bay, Florida. Arch. Environ. Contam. Toxicol., 46; 147-161. doi: 10.1007/s00244-003-2270-z. Manzo, S., Parrella, L., Schiavo, S., Spaziani F., Chiavarini, S., Tebano, C., De Maio L., Capone S., Siciliano A.V., & Armiento, G. (2022). Gathering new knowledge from existing monitoring dataset of Campania marine coastal area (Southern Italy). Environ. Sci. Pollut. Res., 29; 83291-83303. Doi: 10.1007/s11356-022-21615-x. Method of quantitative chemical analysis М-02-902-125-2005 (2005). Determination of As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Sn, Zn (acid-soluble forms) in soils and bottom sediments by atomic absorption method. Saint Petersburg:Analit. Moshchenko, A.V., Belan, T.A., Borisov, B.M., Lishavskaya, T.S., & Sevastianov, A.V. (2019). Modern contamination of bottom sediments and ecological state of macrozoobenthos in the coastal zone at Vladivostok (Peter the Great Bay, Japan Sea). Izv. TINRO, 196(1); 155-181. doi: 10.26428/1606-9919-2019-196-155-181. Naz, S., Chatha, A.M.M., Téllez-Isaías, G., Ullah, S., Ullah, Q., Khan, M.Z., Shah, M.K., Abbas, G., Kiran, A., & Mushtaq, R. (2023). A Comprehensive Review on Metallic Trace Elements Toxicity in Fishes and Potential Remedial Measures. Water, 15; 3017. doi: 10.3390/w15163017. Novikov, M.A. (2020). Pollution accumulation zones in the bottom sediments of the Barents Sea. Oceanology, 62(4); 578-589. On the Preparation of Documentation on Territory Planning for the Placement of a Pipeline Transportation Object of Federal Significance “Gas Pipeline and Eastern Petrochemical Company of Primorsky Krai”: RF Ministry of Energy Order No. 178 of March 11, 2020), Moscow: Minist. Energ. Ross. Fed. Ovsyanyi, E.I., Kotelianets, E.A., & Orekhova, N.A. (2009). Arsenic and heavy metals in bottom sediments of Balaklava Bay (Black Sea). Marine Hydrophysical Journal, 4; 67–80. (In Russ.). Petukhov, V., Petrova, E., Kiryanov, A., Zheldak, E., & Kholodov, A. (2023). Assessment of contamination of marine sediments and their potential toxicity in the Uglovoy Bay, Peter the Great Gulf, Sea of Japan/East Sea. Environ. Sci Pollut Res Int., 30(31); 77798-77806. doi: 10.1007/s11356-023-28021-x. Podgurskaya, O. V., & Kavun, V. Ya. (2005). Comparative analysis of subcellular distribution of heavy metals in organs of the bivalves Crenomytilus grayanus and Modiolus modiolus under conditions of chronic pollution. Russ. J. Mar. Biol., 31(6); 435-442. Savich, V.I., Belopukhov, S.L., Nikitochkin, D.N., & Filippova, A.V. (2013). New methods of soil purification from heavy metals. Izv. Orenburg State Agrarian University, 42(4); 216-218. Sevastyanov, V. S., Kuznetsova, O. V., & Fedulov, V. S. (2020). Accumulation of organic matter, heavy metals and rare earth elements in marine sediment at different distances from the Indigirka River delta. Geochem. Int., 65(12); 1167-1175. doi: 10.31857/S0016752520120043. Shang, W., Yang, M., Han, Z., & Chen, X. (2023). Distribution, contamination assessment, and sources of heavy metals in surface sediments from the south of the North Yellow Sea, China. Mar. Pollut. Bull. 196; 115577. doi: 10.1016/j.marpolbul.2023.115577. Shulkin, V. M. (2004). Metals in ecosystems of marine shallow waters. Vladivostok: Dalnauka, 277. Szefer, P., Szefer, K., Glasby, G.P., Pempkowiak, J., & Kaliszan, R. (1996). Heavy metal pollution in surficial sediments from the southern Baltic Sea off Poland. J. Environ. Sci. Health Part A, 31(10); 2723-2754. doi: 10.1080/10934529609376520. Tishchenko, P. Y., Medvedev, E. V., & Barabantschikov, Y. A. (2020). Organic carbon and carbonate system in bottom sediments of shallow bays of Peter the Great Bay (Sea of Japan). Geochem. Int., 65(6); 583-598. Doi: 10.31857/S001675252005012X. Vezzone, M., Cesar, R., Abessa, D.M.S., Serrano, A., Lourenço, R., Castilhos, Z., Rodrigues, A.P., Perina, F.C., & Polivanov, H. (2019). Metal pollution in surface sediments from Rodrigo de Freitas Lagoon (Rio de Janeiro, Brazil): Toxic effects on marine organisms. Environ. Pollut., 252; 270-280. doi:10.1016/j.envpol.2019.05.094. Warmer, H., & van Dokkum, R. (2002) Water pollution control in the Netherlands. Policy and practice. RIZA report 2002.009. Lelystad, 3(95); 77. Wang, C., Wang, Z., & Zhang, X. (2021). Distribution of eight heavy metals in the inner shelf sediments of East China Sea: Risk assessments and sources analysis. Ecosyst. Health Sustain., 7(1); 1888656. doi: 10.1080/20964129.2021.1888656. Wenning, R. J., & Christopher, G. I. (2004). Use of Sediment Quality Guidelines and Related Tools for the Assessment of Contaminated Sediments. Executive Summary Booklet of a SETAC, 44. Wilbers, G.-J., Becker, M., Nga, L.T., Sebesvari, Z., & Renaud, F.G. (2014). Spatial and temporal variability of surface water pollution in the Mekong Delta, Vietnam. Sci. Total Environ., 486(1); 653-665. doi: 10.1016/j.scitotenv.2014.03.049. | ||
آمار تعداد مشاهده مقاله: 113 تعداد دریافت فایل اصل مقاله: 24 |