
تعداد نشریات | 163 |
تعداد شمارهها | 6,823 |
تعداد مقالات | 73,558 |
تعداد مشاهده مقاله | 134,673,983 |
تعداد دریافت فایل اصل مقاله | 105,203,016 |
In Vivo Antitrypanosomal Activities of Methanolic Extract of Lawsonia inermis Linn. Leaves on Trypanosome Brucei Infected Wistar Rat | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 14، دوره 19، شماره 3، مهر 2025، صفحه 549-562 اصل مقاله (1.63 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.19.3.1005578 | ||
نویسندگان | ||
Aremu Abdulfatai* 1؛ Ameen Saliu Akanni2؛ Akorede Ganiu Jimoh1؛ Olatunji Omobolanle Aishat2؛ Basiru A3؛ Ahmed Olayiwola Akeem4؛ Kadir Adebisi Rafiu1 | ||
1Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria. | ||
2Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria. | ||
3Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria. | ||
4Department of Veterinary Microbiology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria. | ||
چکیده | ||
Background: Trypanosomiasis is a major disease affecting both humans and animals. Nearly 30000 individuals in various countries of sub-Saharan Africa have African trypanosomiasis, which leads to approximately 21000 deaths annually. Objectives: This study aimed to evaluate the anti-trypanocidal effects of Lawsonia inermis (LI) in rats infected with Trypanosome Brucei. Methods: Thirty rats were allotted to groups (1-5), six rats each: Group 1 (negative control), 2 (tryps control), 3 (diminazene [DA] 7 mg/kg), 4 (LI at 200 mg/kg) and 5 (DA+LI). All rats in groups (2-5) were infected with 3×106 Trypanosoma brucei per milliliter of blood. Results: The percentage weight gain of rats in the DA extract combination group showed increased weight gain (6.3%) compared to tryps-control. DA showed significant weight gain compared to the negative control. The survivability rate showed that the DA, LI and DA+LI combinations survived for 14 days without visible relapse. The packed cell volume (PCV), red blood cell (RBC), white blood cell (WBC), platelet and mean corpuscular volume (MCV) increased significantly in the extract-treated groups. In contrast, mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC) decreased significantly. Lymphocytes, monocytes, eosinophils, and basophils showed significantly more growth than those in the control group. Globulin, aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP) and blood urea nitrogen increased non-significantly. Creatinine and total bilirubin levels were significantly decreased compared to those in the untreated control. LI significantly increased glutathione (GSH), glutathione S-transferase (GST), glutathione peroxidase (GPx) and superoxide dismutase (SOD) and decreased MDA and inflammatory cytokines (interleukin [IL]-1, 6 and 12) compared to the untreated control groups. Conclusion: LI reduced parasitemia in the transient phase, and the drug-extract combination cleared parasitemia quickly. | ||
کلیدواژهها | ||
Extract؛ Lawsonia inermis (LI)؛ T. brucei؛ Trypanocidal drug؛ Wistar rats | ||
اصل مقاله | ||
Introduction
Level of the parasites in the blood
Expression of IL
Discussion
Abdulfatai, A., & Ayotunde, O. O. (2022). Lawsonia inermis Linn; review of plant with both industrial and medicinal properties. Media Kedokteran Hewan, 33(2), 105-30. [DOI:10.20473/mkh.v33i2.2022.105-130] Abdulfatai, A., Eghianruwa, I., Biobaku, K. T., Ahmed, A. O., & Basiru, A. (2017). Crude methanolic extract of Moringa oleifera leaves improves the efficacy of Diminazene Aceturate in the treatment of Trypanosome infected rats. Ceylon Journal of Science, 46(4), 43-53. [DOI:10.4038/cjs.v46i4.7467] Abras, A., Ballart, C., Fernández-Arévalo, A., Pinazo, M. J., Gascón, J., & Muñoz, C., et al. (2022). Worldwide control and management of chagas disease in a new era of globalization: A close look at congenital trypanosoma cruzi infection. Clinical Microbiology Reviews, 35(2), e0015221. [DOI:10.1128/cmr.00152-21][PMID] Abro, Z., Fetene, G. M., Kassie, M., & Melesse, T. M. (2023). Socioeconomic burden of trypanosomiasis: Evidence from crop and livestock production in Ethiopia. Journal of Agriculture Economy, 74(3), 785-799. [DOI:10.1111/1477-9552.12531] Abro, Z., Kassie, M., Muriithi, B., Okal, M., Masiga, D., & Wanda, G., et al. (2021). The potential economic benefits of controlling trypanosomiasis using waterbuck repellent blend in sub-Saharan Africa. Plos One, 16(7), e0254558. [DOI:10.1371/journal.pone.0254558][PMID] Aremu, A., Kingsley, E. I., Talha, B. K., Akeem, A. O., Ibrahim, R. A., & Jimoh, A. G., et al. (2018). Methanolic leaf extract of moringa oleifera improves the survivability rate, weight gain and histopathological changes of Wister rats infected with Trypanosoma brucei. International Journal of Veterinary Science and Medicine, 6(1), 39–44. [DOI:10.1016/j.ijvsm.2018.04.006][PMID] Aremu, A., Oridupa, O. A., Akorede, G. J., Olatunji, A. O., Basiru, A., & Ahmed, A. O., et al. (2022). Safety evaluation of lawsonia inermis on physiological, andrological and haematological parameters of male wistar rats. Journal of Basic Medical Veterinary, 11(2), 75-89. [DOI:10.20473/jbmv.v11i2.32483] Aremu, A., Oridupa, A. O., Basiru, A., Akorede, G. J., & Ahmed, O. A. (2023). Safety evaluation of bioactive sub-fraction of lawsonia inermis linn leaves in male wistar rats. Sahel Journal of Veterinary Science, 20(1), 22-27. [DOI:10.54058/saheljvs.v20i1.345] Asadi-Rizi, A., Amjad, L., Shahrani, M., & Amini-Khoei, H. (2024). Investigating the mechanisms involved in scopolamine-induced memory degradation. Archives of Razi Institute, 79(3), 555-564. [DOI:10.32592/ARI.2024.79.3.555][PMID] Chikhaoui, M., Smail, F., Aiche, S., & Benamor, N. (2023). [Comparing hematological and biochemical profiles of pregnant and non-pregnant barb mares raised in Tiaret, Algeria (Persian)]. Iranian Journal of Veterinary Medicine, 17(4), 309-320. [DOI:10.32598/IJVM.17.4.1005365] Coles, E. H. (1986). Veterinary clinical pathology. Philadelphia: W.B. Saunders. [Link] Dkhil, M. A., Abdel-Gaber, R., Khalil, M. F., Hafiz, T. A., Mubaraki, M. A., & Al-Shaebi, E. M., et al. (2020). Indigofera oblongifolia as a fight against hepatic injury caused by murine trypanosomiasis. Saudi Journal of Biological Sciences, 27(5), 1390–1395. [DOI:10.1016/j.sjbs.2019.11.038][PMID] Eghianruwa, K. I., & Oridupa, O. A. (2018). Chemotherapeutic control of trypanosomosis-a review of past measures, current status and future trends. Veterinary Achieves, 88(2), 245-270. [DOI:10.24099/vet.arhiv.161115a] Ghotbitabar, Z., Asghari, A., Hassanpour, S., & Jahandideh, A. (2022). Effects of quebracho tannin extract on testicular ischemia-/reperfusion. Iranian Journal of Veterinary Medicine, 16(4), 423-431. [Link] Hakimzadeh, S., & Kosar, M. (2024). Wound healing activity of green synthesized copper nanoparticles through cell proliferation-migration, antimicrobial effects and nitric oxide triggering. Archives of Razi Institute, 79(3), 639–644. [DOI:10.32592/ARI.2024.79.3.639][PMID] Herbert, W. J., & Lumsden, W. H. (1976). Trypanosoma brucei: A rapid "matching" method for estimating the host's parasitemia. Experimental Parasitology, 40(3), 427–431. [DOI:10.1016/0014-4894(76)90110-7] [PMID] Hiremath, K. Y., Veeranagoudar, D. K., & Bojja, K. S. (2024). Butea monosperma as a collective phytomedicine and environmentally sustainable, conservative and beneficial plant. Archives of Razi Institute, 79(3), 465–474. [DOI:10.32592/ARI.2024.79.3.465][PMID] Izadi, F., & Ramalakshmi, S. (2024). Unveiling of the anti-tumor activity of green synthesized zinc nanoparticles against ehrlich solid tumors in mice. Archives of Razi Institute, 79(3), 593–600. [DOI:10.32592/ARI.2024.79.3.593][PMID] Kemboi, F., Ondiek, J. O., King’ori, A., & Onjoro, P. A. (2023). Effects of anti-nutritive factors on ruminants and methods to alleviate them: A review. Journal of Science, 29(3):323-34. [DOI:10.22271/veterinary.2023.v8.i1a.461] Kennedy, P. G. E., & Rodgers, J. (2019). Clinical and neuropathogenetic aspects of human African trypanosomiasis. Frontiers in Immunology, 10, 39. [DOI:10.3389/fimmu.2019.00039][PMID] Khani, A., & Khorasgani, E. M. (2021). Investigating the effect of hydroalcoholic extract of eryngos on plasma concentration of blood glucose, blood cells and pancreatic tissue in diabetic rats. Iranian Journal of Veterinary Medicine, 15(4), 440-451. [DOI:10.22059/IJVM.2021.311523.1005134] Mojibi, R., Mehrzad, J., Sharifzadeh, A., & Nikaein, D. (2022). Apoptotic effects of caffeic acid phenethyl ester and matricaria chamomilla essential oil on A549 non-small cell lung cancer cells. Iranian Journal of Veterinary Medicine, 16(4), 390-399. [Link] Neves, J. V., Gomes, A. C., Costa, D. M., Barroso, C., Vaulont, S., & Cordeiro da Silva, A., et al. (2021). A role for hepcidin in the anemia caused by Trypanosoma brucei infection. Haematologica, 106(3), 806–818. [DOI:10.3324/haematol.2019.227728][PMID] Oula, J. O., Mose, J. M., Waiganjo, N. N., Chepukosi, K. W., Mitalo, N. S., & Isaac, A. O., et al. (2023). Vitamin B12 blocked Trypanosoma brucei rhodesiense-driven disruption of the blood brain barrier, and normalized nitric oxide and malondialdehyde levels in a mouse model. Parasitology International, 96, 102775. [DOI:10.1016/j.parint.2023.102775] [PMID] Paré, D., N’do, J. Y. P., & Hilou, A. (2020). Phytochemical and biological investigation of 5 bioactive fractions of Caralluma acutangula, a medicinal plant used in traditional medicine in northern of Burkina Faso. GSC Biology & Pharmaceutical Science, 11(3), 081-091. [DOI:10.30574/gscbps.2020.11.3.0159] Renu, K., Prasanna, P. L., & Valsala Gopalakrishnan, A. (2020). Coronaviruses pathogenesis, comorbidities and multi-organ damage-A review. Life Sciences, 255, 117839. [DOI:10.1016/j.lfs.2020.117839][PMID] Sahoo, H., & Mahalik, G. (2020). Ethnobotanical survey of medicinal plants of Kantapada block of Cuttack district, Odisha, India. International Journal of Bioscience, 16(5), 284-292. [DOI:10.12692/ijb/16.5.284-292] Salifu, A. O., Bot, M. H., Olaolu, O. S., Uzoigwe, N. C., Alanza, A. J., & Panshak, L. A., et al. (2022). Serum and stress marker indices of West African dwarf goats challenged with trypanosoma evansi and then treated with artemether-lumefantrine. Nigerian Journal of Animal Production, 49(6), 24-31. [DOI:10.51791/njap.v49i6.3844] Satarzadeh, R., Motallebi, A. A., Hosseini, H., & Ahari, H. (2024). The impact of chitosan nanoparticles coating with sodium lactate on beef hamburger quality during storage at 4°c: Oxidative stability, microbial and sensorial characteristics. Archives of Razi Institute, 79(3), 529–540. [DOI:10.32592/ARI.2024.79.3.529][PMID] Sharma, A., Singh, A., Dar, M. A., Kaur, R. J., Charan, J., & Iskandar, K., et al. (2022). Menace of antimicrobial resistance in LMICs: Current surveillance practices and control measures to tackle hostility. Journal of Infection and Public Health, 15(2), 172–181. [DOI:10.1016/j.jiph.2021.12.008] [PMID] Siddiqui, N. (2023). An overview of ethnobotanical and pharmacological study of Embelia ribes (baobarang): A potential unani herbal drug. Sustainability, Agriculture Food and Environment Research Science, 11, 190-195. [DOI:10.7770/safer-V11N1-art574] Soren, P., Sharma, R., Kharwal, M., Singh, R., Singh, B., & Mal, G. (2019). Effect on the body weight, organ weight and haematology during sub-chronic lantadene toxicity and its amelioration with Berberis lycium and Picrorhiza kurroa in guinea pigs. Journal of Pharmacology and Phytochemistry, 8(6), 373-377. [Link] Stijlemans, B., De Baetselier, P., Magez, S., Van Ginderachter, J. A., & De Trez, C. (2018). African trypanosomiasis-associated anemia: the contribution of the interplay between parasites and the mononuclear phagocyte system. Frontiers in Immunology, 9, 218. [DOI:10.3389/fimmu.2018.00218][PMID] Ukwueze, C. S., Akpa, P. O., Odo, R. I., Aronu, C. J., & Anene, B. M. (2022). The beneficial effects of resveratrol supplementation on parasitemia, oxidative stress and serum biochemical parameters in Trypanosoma brucei infected dogs. Iraqi Journal of Veterinary Science, 36(3), 753-760. [DOI:10.33899/ijvs.2022.131843.2009] Wamwiri, F. N., & Auma, J. E. (2021). Overview of the vectors and their role in transmission of african animal trypanosomiasis. In Orenge, C. O (Ed.), Combating and controlling nagana and tick-borne diseases in livestock (pp. 53-72). Hershey: IGI Global. [DOI:10.4018/978-1-7998-6433-2.ch003] World Health Organization (WHO). (2022). Report of the fourth WHO stakeholders meeting on gambiense and rhodesiense human African trypanosomiasis elimination Virtual meeting, 1-3 June 2021. Geneva: World Health Organization. [Link] Wurochekke, A. U., Chechet, G., & Nok, A. J. (2004). In vitro and in vivo anti trypanosomal potential of lawsonia inermis linn against trypanosoma brucei brucei infection in mice. Journal of Medical Science, 4(3), 236-239. [DOI:10.1016/j.bcab.2018.06.004] | ||
مراجع | ||
Abdulfatai, A., & Ayotunde, O. O. (2022). Lawsonia inermis Linn; review of plant with both industrial and medicinal properties. Media Kedokteran Hewan, 33(2), 105-30. [DOI:10.20473/mkh.v33i2.2022.105-130] Abdulfatai, A., Eghianruwa, I., Biobaku, K. T., Ahmed, A. O., & Basiru, A. (2017). Crude methanolic extract of Moringa oleifera leaves improves the efficacy of Diminazene Aceturate in the treatment of Trypanosome infected rats. Ceylon Journal of Science, 46(4), 43-53. [DOI:10.4038/cjs.v46i4.7467] Abras, A., Ballart, C., Fernández-Arévalo, A., Pinazo, M. J., Gascón, J., & Muñoz, C., et al. (2022). Worldwide control and management of chagas disease in a new era of globalization: A close look at congenital trypanosoma cruzi infection. Clinical Microbiology Reviews, 35(2), e0015221. [DOI:10.1128/cmr.00152-21][PMID] Abro, Z., Fetene, G. M., Kassie, M., & Melesse, T. M. (2023). Socioeconomic burden of trypanosomiasis: Evidence from crop and livestock production in Ethiopia. Journal of Agriculture Economy, 74(3), 785-799. [DOI:10.1111/1477-9552.12531] Abro, Z., Kassie, M., Muriithi, B., Okal, M., Masiga, D., & Wanda, G., et al. (2021). The potential economic benefits of controlling trypanosomiasis using waterbuck repellent blend in sub-Saharan Africa. Plos One, 16(7), e0254558. [DOI:10.1371/journal.pone.0254558][PMID] Aremu, A., Kingsley, E. I., Talha, B. K., Akeem, A. O., Ibrahim, R. A., & Jimoh, A. G., et al. (2018). Methanolic leaf extract of moringa oleifera improves the survivability rate, weight gain and histopathological changes of Wister rats infected with Trypanosoma brucei. International Journal of Veterinary Science and Medicine, 6(1), 39–44. [DOI:10.1016/j.ijvsm.2018.04.006][PMID] Aremu, A., Oridupa, O. A., Akorede, G. J., Olatunji, A. O., Basiru, A., & Ahmed, A. O., et al. (2022). Safety evaluation of lawsonia inermis on physiological, andrological and haematological parameters of male wistar rats. Journal of Basic Medical Veterinary, 11(2), 75-89. [DOI:10.20473/jbmv.v11i2.32483] Aremu, A., Oridupa, A. O., Basiru, A., Akorede, G. J., & Ahmed, O. A. (2023). Safety evaluation of bioactive sub-fraction of lawsonia inermis linn leaves in male wistar rats. Sahel Journal of Veterinary Science, 20(1), 22-27. [DOI:10.54058/saheljvs.v20i1.345] Asadi-Rizi, A., Amjad, L., Shahrani, M., & Amini-Khoei, H. (2024). Investigating the mechanisms involved in scopolamine-induced memory degradation. Archives of Razi Institute, 79(3), 555-564. [DOI:10.32592/ARI.2024.79.3.555][PMID] Chikhaoui, M., Smail, F., Aiche, S., & Benamor, N. (2023). [Comparing hematological and biochemical profiles of pregnant and non-pregnant barb mares raised in Tiaret, Algeria (Persian)]. Iranian Journal of Veterinary Medicine, 17(4), 309-320. [DOI:10.32598/IJVM.17.4.1005365] Coles, E. H. (1986). Veterinary clinical pathology. Philadelphia: W.B. Saunders. [Link] Dkhil, M. A., Abdel-Gaber, R., Khalil, M. F., Hafiz, T. A., Mubaraki, M. A., & Al-Shaebi, E. M., et al. (2020). Indigofera oblongifolia as a fight against hepatic injury caused by murine trypanosomiasis. Saudi Journal of Biological Sciences, 27(5), 1390–1395. [DOI:10.1016/j.sjbs.2019.11.038][PMID] Eghianruwa, K. I., & Oridupa, O. A. (2018). Chemotherapeutic control of trypanosomosis-a review of past measures, current status and future trends. Veterinary Achieves, 88(2), 245-270. [DOI:10.24099/vet.arhiv.161115a] Ghotbitabar, Z., Asghari, A., Hassanpour, S., & Jahandideh, A. (2022). Effects of quebracho tannin extract on testicular ischemia-/reperfusion. Iranian Journal of Veterinary Medicine, 16(4), 423-431. [Link] Hakimzadeh, S., & Kosar, M. (2024). Wound healing activity of green synthesized copper nanoparticles through cell proliferation-migration, antimicrobial effects and nitric oxide triggering. Archives of Razi Institute, 79(3), 639–644. [DOI:10.32592/ARI.2024.79.3.639][PMID] Herbert, W. J., & Lumsden, W. H. (1976). Trypanosoma brucei: A rapid "matching" method for estimating the host's parasitemia. Experimental Parasitology, 40(3), 427–431. [DOI:10.1016/0014-4894(76)90110-7] [PMID] Hiremath, K. Y., Veeranagoudar, D. K., & Bojja, K. S. (2024). Butea monosperma as a collective phytomedicine and environmentally sustainable, conservative and beneficial plant. Archives of Razi Institute, 79(3), 465–474. [DOI:10.32592/ARI.2024.79.3.465][PMID] Izadi, F., & Ramalakshmi, S. (2024). Unveiling of the anti-tumor activity of green synthesized zinc nanoparticles against ehrlich solid tumors in mice. Archives of Razi Institute, 79(3), 593–600. [DOI:10.32592/ARI.2024.79.3.593][PMID] Kemboi, F., Ondiek, J. O., King’ori, A., & Onjoro, P. A. (2023). Effects of anti-nutritive factors on ruminants and methods to alleviate them: A review. Journal of Science, 29(3):323-34. [DOI:10.22271/veterinary.2023.v8.i1a.461] Kennedy, P. G. E., & Rodgers, J. (2019). Clinical and neuropathogenetic aspects of human African trypanosomiasis. Frontiers in Immunology, 10, 39. [DOI:10.3389/fimmu.2019.00039][PMID] Khani, A., & Khorasgani, E. M. (2021). Investigating the effect of hydroalcoholic extract of eryngos on plasma concentration of blood glucose, blood cells and pancreatic tissue in diabetic rats. Iranian Journal of Veterinary Medicine, 15(4), 440-451. [DOI:10.22059/IJVM.2021.311523.1005134] Mojibi, R., Mehrzad, J., Sharifzadeh, A., & Nikaein, D. (2022). Apoptotic effects of caffeic acid phenethyl ester and matricaria chamomilla essential oil on A549 non-small cell lung cancer cells. Iranian Journal of Veterinary Medicine, 16(4), 390-399. [Link] Neves, J. V., Gomes, A. C., Costa, D. M., Barroso, C., Vaulont, S., & Cordeiro da Silva, A., et al. (2021). A role for hepcidin in the anemia caused by Trypanosoma brucei infection. Haematologica, 106(3), 806–818. [DOI:10.3324/haematol.2019.227728][PMID] Oula, J. O., Mose, J. M., Waiganjo, N. N., Chepukosi, K. W., Mitalo, N. S., & Isaac, A. O., et al. (2023). Vitamin B12 blocked Trypanosoma brucei rhodesiense-driven disruption of the blood brain barrier, and normalized nitric oxide and malondialdehyde levels in a mouse model. Parasitology International, 96, 102775. [DOI:10.1016/j.parint.2023.102775] [PMID] Paré, D., N’do, J. Y. P., & Hilou, A. (2020). Phytochemical and biological investigation of 5 bioactive fractions of Caralluma acutangula, a medicinal plant used in traditional medicine in northern of Burkina Faso. GSC Biology & Pharmaceutical Science, 11(3), 081-091. [DOI:10.30574/gscbps.2020.11.3.0159] Renu, K., Prasanna, P. L., & Valsala Gopalakrishnan, A. (2020). Coronaviruses pathogenesis, comorbidities and multi-organ damage-A review. Life Sciences, 255, 117839. [DOI:10.1016/j.lfs.2020.117839][PMID] Sahoo, H., & Mahalik, G. (2020). Ethnobotanical survey of medicinal plants of Kantapada block of Cuttack district, Odisha, India. International Journal of Bioscience, 16(5), 284-292. [DOI:10.12692/ijb/16.5.284-292] Salifu, A. O., Bot, M. H., Olaolu, O. S., Uzoigwe, N. C., Alanza, A. J., & Panshak, L. A., et al. (2022). Serum and stress marker indices of West African dwarf goats challenged with trypanosoma evansi and then treated with artemether-lumefantrine. Nigerian Journal of Animal Production, 49(6), 24-31. [DOI:10.51791/njap.v49i6.3844] Satarzadeh, R., Motallebi, A. A., Hosseini, H., & Ahari, H. (2024). The impact of chitosan nanoparticles coating with sodium lactate on beef hamburger quality during storage at 4°c: Oxidative stability, microbial and sensorial characteristics. Archives of Razi Institute, 79(3), 529–540. [DOI:10.32592/ARI.2024.79.3.529][PMID] Sharma, A., Singh, A., Dar, M. A., Kaur, R. J., Charan, J., & Iskandar, K., et al. (2022). Menace of antimicrobial resistance in LMICs: Current surveillance practices and control measures to tackle hostility. Journal of Infection and Public Health, 15(2), 172–181. [DOI:10.1016/j.jiph.2021.12.008] [PMID] Siddiqui, N. (2023). An overview of ethnobotanical and pharmacological study of Embelia ribes (baobarang): A potential unani herbal drug. Sustainability, Agriculture Food and Environment Research Science, 11, 190-195. [DOI:10.7770/safer-V11N1-art574] Soren, P., Sharma, R., Kharwal, M., Singh, R., Singh, B., & Mal, G. (2019). Effect on the body weight, organ weight and haematology during sub-chronic lantadene toxicity and its amelioration with Berberis lycium and Picrorhiza kurroa in guinea pigs. Journal of Pharmacology and Phytochemistry, 8(6), 373-377. [Link] Stijlemans, B., De Baetselier, P., Magez, S., Van Ginderachter, J. A., & De Trez, C. (2018). African trypanosomiasis-associated anemia: the contribution of the interplay between parasites and the mononuclear phagocyte system. Frontiers in Immunology, 9, 218. [DOI:10.3389/fimmu.2018.00218][PMID] Ukwueze, C. S., Akpa, P. O., Odo, R. I., Aronu, C. J., & Anene, B. M. (2022). The beneficial effects of resveratrol supplementation on parasitemia, oxidative stress and serum biochemical parameters in Trypanosoma brucei infected dogs. Iraqi Journal of Veterinary Science, 36(3), 753-760. [DOI:10.33899/ijvs.2022.131843.2009] Wamwiri, F. N., & Auma, J. E. (2021). Overview of the vectors and their role in transmission of african animal trypanosomiasis. In Orenge, C. O (Ed.), Combating and controlling nagana and tick-borne diseases in livestock (pp. 53-72). Hershey: IGI Global. [DOI:10.4018/978-1-7998-6433-2.ch003] World Health Organization (WHO). (2022). Report of the fourth WHO stakeholders meeting on gambiense and rhodesiense human African trypanosomiasis elimination Virtual meeting, 1-3 June 2021. Geneva: World Health Organization. [Link] Wurochekke, A. U., Chechet, G., & Nok, A. J. (2004). In vitro and in vivo anti trypanosomal potential of lawsonia inermis linn against trypanosoma brucei brucei infection in mice. Journal of Medical Science, 4(3), 236-239. [DOI:10.1016/j.bcab.2018.06.004]
| ||
آمار تعداد مشاهده مقاله: 312 تعداد دریافت فایل اصل مقاله: 164 |