
تعداد نشریات | 162 |
تعداد شمارهها | 6,692 |
تعداد مقالات | 72,232 |
تعداد مشاهده مقاله | 129,198,670 |
تعداد دریافت فایل اصل مقاله | 102,028,582 |
تاثیر نانوذرات دیاکسید تیتانیوم بر ویژگیهای مورفوفیزیولوژیکی گل شاخه بریده رز | ||
علوم باغبانی ایران | ||
دوره 55، شماره 4، دی 1403، صفحه 597-612 اصل مقاله (1.82 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijhs.2022.342518.2025 | ||
نویسندگان | ||
حمید سلیمانی؛ مسعود ارغوانی* ؛ میترا اعلائی | ||
گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران. | ||
چکیده | ||
افزایش عمر گلهای شاخه بریده و حفظ کیفیت آنها چالش اصلی گلفروشان در تجارت گل در سراسر جهان است. به منظور بررسی تاثیر کاربرد پیش از برداشت نانو ذرات دی اکسید تیتانیوم بر برخی ویژگیهای مورفولوژیکی، فیزیولوژیکی و بیوشیمیایی پس از برداشت گل رز شاخه بریده رقم 'کلاسیک سزان' آزمایشی به صورت فاکتوریل در قالب طرح کاملا تصادفی با سه تکرار در سال 1400 اجرا گردید. نانوذرات دیاکسید تیتانیوم با غلظتهای صفر، 5 و 10 میلیگرم بر لیتر، دو ماه پیش از برداشت (هر 10 روز یکبار و در مجموع 6 بار) روی گلها محلول پاشی گردید. پس از برداشت گلها، ویژگی های موردنظر در فاصلههای صفر، 4، 8 و 12 روز مورد ارزیابی قرار گرفتند. نتایج نشان داد که تیمار نانو ذرات دیاکسیدتیتانیوم باعث بهبود تمام صفات مورد آزمایش گردید. گلهای تیمار شده با نانوذرات دیاکسید تیتانیوم با غلظت صفر (شاهد)، 5 و 10 میلی گرم بر لیتر در پیش از برداشت به ترتیب دارای قطر گل 3/40، 47 و 6/48 میلیمتر بودند. تیمار 10میلیگرم در لیتر نانوذرات دیاکسید تیتانیوم باعث 4 روز افزایش در عمر گلجایی نسبت به شاهد گردید و عمرگلجایی به 12 روز افزایش یافت. تیمار با نانوذرات دیاکسید تیتانیوم باعث افزایش میزان نسبی محلول جذب شده و کاهش میزان نشت یونی گردید. همچنین، پروتئین کل، و آنزیمهای پراکسیداز و سوپراکسید دیسموتاز تحت تیمار نانوذرات دیاکسید تیتانیوم افزایش یافتند. بر اساس نتایج، غلظت 10 میلیگرم در لیتر در بهبود صفات پس از برداشت گل رز شاخه بریده موثرتر از 5 میلیگرم در لیتر بود. | ||
کلیدواژهها | ||
آنزیمهای آنتیاکسیدان؛ انسداد آوندی؛ عمر پس از برداشت؛ نانو ذرات | ||
عنوان مقاله [English] | ||
Effect of Titanium Dioxide Nanoparticles on Morphophysiological Characteristics of Cut Rose Flowers | ||
نویسندگان [English] | ||
Hamid Soleymani؛ Masoud Arghavani؛ Mitra Aelaei | ||
Department of Horticultural Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran | ||
چکیده [English] | ||
Extending the vase life of cut flowers and maintaining their quality is a major challenge for florists in the flower trade worldwide. In order to study the effect of pre-harvest application of titanium dioxide nanoparticles on some morphological, physiological and biochemical characteristics of the cut rose cultivar 'Classic Cezanne' a factorial experiment in the form of a completely randomized design with three replications was conducted during the year 2021. Titanium dioxide nanoparticles (0, 5 and 10 mg L-1) were sprayed on the flowers two months before harvest (once every 10 days and a total of 6 times). Some morphophysiological traits were evaluated at intervals of 0, 4, 8 and 12 days after harvesting. The results showed that titanium dioxide nanoparticles improved all the tested traits. Flowers treated with 0 (control), 5 and 10 mg L-1 titanium dioxide nanoparticles had flower diameters of 40.3, 47 and 48.6, respectively. Applying the 10 mg L-1 titanium dioxide nanoparticles increased the shelf life of flowers by 4 days compared to the control; in the other words, the shelf life increased to 12 days. Titanium dioxide nanoparticles also increased the relative amount of absorbed solution and decreased the amount of ion leakage. Meanwhile, total protein, peroxidase enzyme, superoxide dismutase enzyme and catalase enzyme increased under applied concentrations of titanium dioxide nanoparticles. Based on the results of this study, the effect of the concentration of 10 mg L-1 on improving the post harvest traits of rose cut flowers was more effective than 5 mg L-1. | ||
کلیدواژهها [English] | ||
Antioxidant enzymes, Nanoparticle, Postharvest life, Xylem occlusion | ||
مراجع | ||
چمنی، اسماعیل.، خلیقی، احمد.، جویس، داریل.، ایروینق، دونالد.، زمانی، ذبیح اله، مستوفی، یونس و کافی، محسن (1384). اثر تیوسولفات نقره و 1- متیل سیکلوپروپن بر ویژگی های فیزیکو شیمیایی گل بریدنی رز رقم فرست رد. مجله علوم و فنون باغبانی ایران، 6(3)، 159-170. داوری، آذر، سلوکی، محمود و فاضلی نسب، بهمن (1396). بررسی اثر نانو ذرات دیاکسید تیتانیوم و اسید جاسمونیک بر روند تغییرات فیتوشیمیایی و آنتیاکسیدانی عصاره ژنوتیپهای گیاه دارویی (Satureja hortensis L.). اکوفیتوشیمی گیاهان دارویی، 5(4)، 1-20. غلامی، اتنا، عباسپور، حسین.، گرامی، مهیار و هاشمی مقدم، حمید (۱۳۹۹). بررسی اثر نانوذرات تیتانیومدیاکسید (Tio2) بر رنگیزه های فتوسنتزی و برخی از خصوصیات بیوشیمیایی و آنتی اکسیدانی گیاه رزماری (Rosmarinus officinalis L.). مجله علوم و صنایع غذایی ایران،17(105)،123-134. http://fsct.modares.ac.ir/article-7-27565-fa.html
RERERENCES Ahmad, I., Saleem, M. & Dole, J. M. (2016). Postharvest performance of cut ‘White Prosperity’ gladiolus spikes in response to nano-and other silver sources, Canadian Journal of Plant Science, 96(3), 511-516. http://dx.doi.org/10.1139/CJPS-2015-0281 Beni, M. A., Hatamzadeh, A., Nikbakht, A., Ghasemnezhad, M., & Zarchini, M. (2013). Improving physiological quality of cut tuberose (Polianthes tuberosa cv. Single) flowers by continues treatment with humic acid and nano-silver particles. Journal of Ornamental and Horticultural Plants, 3(3), 133-141. http://dx.doi.org/10.6084/m9.figshare.14035055.v1 Bollella, P., Schulz, C., Favero, G., Mazzei, F., Ludwig, R., Gorton, L., & Antiochia, R. (2017). Green synthesis and characterization of gold and silver nanoparticles and their application for development of a third generation lactose biosensor. Electroanalysis, 29(1), 77-86. http://dx.doi.org/10.1002/elan.201600476 Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3 Castiglione, M. R., Giorgetti, L., Geri, C., & Cremonini, R. (2011). The effects of nano- TiO2 on seed germination, development and mitosis of roottip cells of Vicia narbonensis L. and Zea mays L. Journal of Nanoparticle Research, 13, 2443-2449. http://dx.doi.org/10.1007/s11051-010-0135-8 Chamani, E., Khalighi, A., Jouis, D., … and Kafi, M. (2005) Effect of Silver thiosulfate and 1-Methylcyclopropene on physicochemical traits of cut flower rose cv. First Red. Iranian Journal of Horticultural Science and Technology, 6(3), 159-170. (In Persian).
Chance, B., & Maehly, A. C. (1955). Assays of catalase and peroxidases. Methods in Enzymology, 2, 764-775. http://dx.doi.org/10.1016/S0076-6879(55)02300-8 Chen, X., & Mao, S. S. (2007). Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chemical Reviews. 107, 2891–2959. http://dx.doi.org/10.1021/cr0500535 Chen, X., & Schluesener, H. J. (2008). Nanosilver: A nano product in medical application. Toxicology Letters,, 176(1),1-12. https://doi.org/10.1016/j.toxlet.2007.10.004 Colon, G., Maicu, M., Hidalgo, M. C., & Navio, J. A. (2006). Cu-doped TiO2 systems with improved photocatalytic activity. Applied Catalysis B: Environmental. 67, 41–51. http://dx.doi.org/10.1016/j.apcatb.2006.03.019 Davari A., Solouki, M., Fazeli-Nasab, B. (2018). Effects of jasmonic acid and titanium dioxide nanoparticles on process of changes of phytochemical and antioxidant in genotypes of Satureja hortensis L. Eco-phytochemical Journal of Medicinal Plants, 5(4), 1-19. (In Persian). Duffy, E. F., Touati, F. A., & Kehoe, S.C. (2004). A novel TiO2 -assisted solar photocatalytic batch process disinfection reactor for the treatment of biological and chemical contaminants indomestic drinking water in development countries. Solar Energy, 77, 649 - 655. http://dx.doi.org/10.1016/j.solener.2004.05.006 Dubey, S. P., Lahtinen, M., & Sillanpaa, E. (2010). Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 364(1-3), 34-41. http://dx.doi.org/10.1016/j.colsurfa.2010.04.023 Fonseca, J. d. M., Alves, M. J. d.S., Soares, L. S., Moreira, R. d. F. P. M., Valencia, G. A., & Monteiro, A. R. (2021). A review on TiO2-based photocatalytic systems applied in fruit postharvest: setups and perspectives. International Food Research Journal, 144, 110378. https://doi.org/10.1016/j.foodres.2021.110378 Gao, F., Hong, F., Liu, C., Zheng, L., Su, M., Wu, X., Yang, F., Wu, C., & Yang, P. (2006). Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: inducing complex of rubisco-rubisco activase. Biological Trace Element Research, 111(1-3), 239–253. https://doi.org/10.1385/bter:111:1:239 García-González, A., De Abril Alexandra Soriano-Melgar, L., María Luisa Cid-López Yakeline Cortez-Mazatán, G., Mendoza-Mendoza, E., Alonso Valdez-Aguilar, L., & Darío Peralta-Rodríguez, R. (2022). Effects of calcium oxide nanoparticles on vase life of gerbera cut flowers. Scientia Horticulturae, 291, 3, 110532. https://doi.org/10.1016/j.scienta.2021.110532 Ghidan, A. Y., & Antary, T. M. A. (2019). Applications of nanotechnology in agriculture. In M. Stoytcheva, & R. Zlatev (Eds.). Applications of Nanobiotechnology. (pp.1-14). IntechOpen. https://doi.org/10.5772/intechopen.88390 Gohari, G., Mohammadi, A., Akbari, A., Panahirad, S., Dadpour, M. R., Fotopoulos, V., & Kimura, S. (2020). Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports, 10(1), 912. https://doi.org/10.1038/s41598-020-57794-1 Golami A, Abbaspour H, Gerami M, Hashemi-Moghaddam H. (2020) Investigation of effect of titanium dioxide nanoparticles (TiO2) on photosynthetic pigments and some biochemical and antioxidant properties of the Rosmarinus officinalis L Journal of Food Science and Technology(Iran); 17(105), 123-134. (In Persian). http://fsct.modares.ac.ir/article-7-27565-fa.html Hasanzadeh Naemi, M., Zarinnia, V., Jari, S.K., & Fatahi, F. (2021). The effect of exogenous methyl jasmonate and brassinosteroid on physicochemical traits, vase life, and gray mold disease of cut Rose (Rosa hybrida L.) flowers. Journal of the Saudi Society of Agricultural Sciences, 20(7), 467-475. https://doi.org/10.1016/j.jssas.2021.05.007 Hassan, F.A.S., Ali, E.F., & El-Deeb, B. (2014). Improvement of postharvest quality of cut rose cv. ‘First Red’ by biologically synthesized silver nanoparticles. Scientia Horticulturae. 179, 340–348. https://doi.org/10.1016/j.scienta.2014.09.053 Hajizadeh, H.S., Farokhzad, A. and Chelan, V.G. 2012. Using of preservative solutions to improve postharvest life of Rosa Hybrid cv. Black magic. International Journal of Agricultural Technology. 8: 1801-1810. He, S., Joyce., D.C., Irving, D.E., & Faragher, J.D. (2012). Stem end blockage in cut Grevillea ‘Crimson Yul-lo’inflorescences. Postharvest Biology and Technology, 41, 78–84. https://doi.org/10.1016/j.postharvbio.2012.03.002 Helal, M., Sami, R., Algarni, E., Alshehry, G., Aljumayi, H., Al-Mushhin, A.A.M., Benajiba N., Chavali, M., Kumar, N., Iqbal, A., Aloufi, S., Alyamani, A., Madkhali, N., & Almasoudi, A. (2022). Active bionanocomposite coating quality assessments of some cucumber properties with some diverse applications during storage condition by chitosan, nano titanium oxide crystals, and sodium tripolyphosphate. Crystals, 12(2), 131. https://doi.org/10.3390/cryst12020131 Hong, F., Zhou, J., Liu, C., Yang, F., Wu, C., Zheng, L., & Yang, P. (2005). Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biological trace element research, 105(1-3), 269–279. https://doi.org/10.1385/bter:105:1-3:269 Ichimura, K., Kishimoto, M., Norikoshi, R., Kawabata, Y., & Yamada K. (2005). Soluble carbohydrates and variation in vase-life of cut rose cultivars ‘Delilah’ and ‘Sonia’. The Journal of Horticultural Science and Biotechnology. 80(3), 280-286. http://dx.doi.org/10.1080/14620316.2005.11511930 Imani, A., barzegar, K., Piripireivatlou, S. (2011). Relationship between frost injury and ion leakage as an indicator of cold hardiness in 60 almond selections. Journal of Nuts, 2(1), 22-26. https://doi.org/10.22034/jon.2011.515758 Kamiab, F., Shahmoradzadeh Fahreji, S., & Zamani Bahramabadi, E. (2017). Antimicrobial and physiological effects of silver and silicon nanoparticles on vase life of Lisianthus (Eustoma grandiflora cv. Echo) flowers. International Journal of Horticultural Science and Technology, 4(1), 135-144. https://doi.org/10.22059/ijhst.2017.228657.180 Kamal, R, & Mogazy, A.M. (2021). Effect of doping on TiO2 nanoparticles characteristics: studying of fertilizing effect on cowpea plant growth and yield. Journal of Soil Science and Plant Nutrition. 23, 325–337. https://doi.org/10.1007/s42729-021-00648-0 Khojah, E., Sami, R., Helal, M., Elhakem, A., Benajiba, N., Alkaltham, M.S., & Salamatullah, A.M. (2021). Postharvest physicochemical properties and fungal populations of treated cucumber with sodium tripolyphosphate/titanium dioxide nanoparticles during storage. Coatings, 11, 613. http://dx.doi.org/10.3390/coatings11060613 Koushesh Saba, M., & Nazari, F. (2017). Vase life of gerbera cut Flower cv. pink power affected by different treatments of plant essential oils and silver nanoparticles. Journal of Plant Production Research, 24(2), 43-59. https://doi.org/10.22069/jopp.2017.11154.2036 Laware, S., & Raskar, S. (2014). Influence of zinc oxide nanoparticles on growth, flowering and seed productivity in onion. International Journal of Current Microbiology Science, 3, 874-881. Langroudi, M.E., Hashemabadi, D., Kalatejari, S., & Asadpour, L. (2019). Effect of silver nanoparticles, spermine, salicylic acid and essential oils on vase life of alstroemeria. Journal of Neotropical Agriculture, 6(2), 100–108. http://dx.doi.org/10.32404/rean.v6i2.2366 Li, H., Li, H., Liu, J., Luo, Z., Joyce, D., & He, S. (2017). Nano-silver treatments reduced bacterial colonization and biofilm formation at the stem-ends of cut gladiolus ‘Eerde’ spikes. Postharvest Biology and Technology, 123, 102–111. http://dx.doi.org/10.1016/j.postharvbio.2016.08.014 Lin, X., Li, H., Lin, S., Xu, M., Liu, J., Li, Y., & He, S. (2019). Improving the postharvest performance of cut spray ‘Prince’ carnations by vase treatments with nano-silver and sucrose. The Journal of Horticultural Science and Biotechnology, 94(4), 513-521. https://doi.org/10.1080/14620316.2019.1572461 Mazarie, A., Mousavi-nik, S., Ghanbari, A., & Fahmideh, L. (2019). Effect of different spraying concentrations of jasmonic acid and titanium dioxide nanoparticles on some physiological traits and antioxidant system activity of Sage (Salvia officinalis L). Iranian Journal of Plant Biology, 11(1), 1-22.( inPersian) https://doi.org/10.22108/ijpb.2018.110510.1092 Miller, G., & Senjen, R. (2008). Nanotechnology used for food packaging and food contact materials. Nanotechnology in Food and Agriculture. 2, 14-68. Moallaye-Mazraei, S., Chehrazi, M., & Khaleghi, E., (2020). The effect of calcium nanochelate on morphological, physiological, biochemical characteristics and vase life of three cultivars of gerbera under hydroponic system. Plant Productions, 43 (1), 53–66. Mohammadi Ostad Kalayeh, S., Mostofi, Y., & Basirat, M. (2011). Study on some chemical compounds on the vase life of two cultivars of cut roses. Journal of Ornamental and Horticultural Plants. 1(2), 123-128. Mohammadi, R., Maali-Amiri, R., & Abbasi, A. (2013). Effect of TiO2 nanoparticles on chickpea response to cold stress. Biological trace element research, 152(3), 403–410. https://doi.org/10.1007/s12011-013-9631-x Naing, A. H., & Kim, C. K. (2020). Application of nano-silver particles to control the postharvest biologyof cut flowers: A review. Scientia Horticulturae, 270, 109463. https://doi.org/10.1016/j.scienta.2020.109463 Norman, D. J., & J. Chen (2011). Effect of foliar application of titanium dioxide on bacterial blight of geranium and Xanthomonas leaf spot of poinsettia. HortScience, 46, 426– 428. https://doi.org/10.21273/HORTSCI.46.3.426 Owolade, O. F., & Ogunleti. D. O. (2008). Effects of titanium dioxide on the diseases, development and yield of edible cowpea. Plant Protection Research, 48, 329–335. https://doi.org/10.2478/v10045-008-0042-5 Rafi, Z. N., & Ramezanian, A. (2013). Vase life of cut rose cultivars ‘Avalanche’ and ‘Fiesta’ as affected by nano-silver and S-carvone treatments. South African Journal of Botany, 86, 68-72. https://doi.org/10.1016/j.sajb.2013.02.167 Rezvanypour, Sh., & Osfoori, M. )2011(. Effect of chemical treatments and sucrose on vase life of three cut rose cultivars. Journal of Research on Crop Ecophysiology, 7(2), 133-139. Reid, M. S. & Jiang, C.Z. (2012). Postharvest biology and technology of cut flowers and potted plants. Horticultural Reviews, 40, 1-54. https://doi.org/10.1002/9781118351871.ch1 Rezaei Nejad, A., & Ismaili, A. (2014). Comparison of some physio-morphological characteristics of eight cut rose cultivars. Journal of Crops Improvement, 16(3), 663-674. https://doi.org/10.22059/jci.2014.53266 Sami, R., Elhakem, A., Almushhin, A., Alharbi, M., Almatrafi, M., Benajiba, N., Fikry, M., & Helal, M. (2021a). Enhancement in physicochemical parameters and microbial populations of mushrooms as influenced by nano-coating treatments. Scientific Reports, 11, 7915. https://doi.org/10.1038/s41598-021-87053-w Sami, R., Elhakem, A., Alharbi, M., Benajiba, N., Almatrafi, M., Abdelazez, A., & Helal, M. (2021b). Evaluation of antioxidant activities, oxidation enzymes, and quality of nano-coated button mushrooms (Agaricus Bisporus) during storage. Coatings, 11, 149. https://doi.org/10.3390/coatings11020149 Samadzadeh, H., & Kamiab, F. (2017). Effects of silver and calcium nanoparticles on vase life and some physiological traits of 'Konst Coco' Alstroemeria cut flower. Journal of Science and Technology of Greenhouse Culture, 8, 75–89. Singh, A., Singh, N.B., Afzal, S., Singh, T., & Hussain, I. (2018). Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants. Journal of Materials Science, 53(1), 185-201. https://doi.org/10.1007/s10853-017-1544-1 Shabanian, S., Nasr Esfahani, M., Karamian, R., & Lam-Son Phan, T. (2018). Physiological and biochemical modifications by postharvest treatment with sodium nitroprusside extend vase life of cut flowers of two gerbera cultivars. Postharvest Biology and Technology, 137, 1-8. https://doi.org/10.1016/j.postharvbio.2017.11.009 Shafiee-Masouleh, S. S. (2018). Effects of nano-silver pulsing, calcium sulfate and gibberellin on an antioxidant molecule and vase life of cut gerbera flowers., Advances in Horticultural Science, 32(2), 185-191. https://doi.org/10.13128/ahs-21864 Song, U., Jun, H., Waldman, B., Roh, J., Kim, Y., Yi, J., & Lee, E. J. (2013). Functional analyses of nanoparticle toxicity: a comparative study of the effects of TiO2 and Ag on tomatoes (Lycopersicon esculentum). Ecotoxicology and environmental safety, 93, 60–67. https://doi.org/10.1016/j.ecoenv.2013.03.033 Sudaria, M. A., Uthairatanakij, A., & Nuguyen, H.T. (2017). Postharvest quality effects of different vaselife solutions on cut rose (Rosa hybrida L.). International Journal of Agriculture Forestry and Life Sciences, 1(1), 12-20. Sunpapao, A., Wonglom, P., Satoh, S., Takeda, S., & Kaewsuksaeng, S. (2019) Pulsing with magnesium oxide nanoparticles maintains postharvest quality of cut lotus flowers (Nelumbo nucifera Gaertn) ‘Sattabongkot’ & ‘Saddhabutra. The Horticulture Journal, 88(3), 420–426. https://doi.org/10.2503/hortj.UTD-087 Stewart, R. R., & Bewley, J. D. (1980). Lipid peroxidation associated with accelerated aging of soybean axes. Plant physiology, 65(2), 245–248. https://doi.org/10.1104/pp.65.2.245 Van Ieperen, W., Van Meetran, U., & Nijsse, J. (2002). Embolism repair in cut flower stems: a physical approach. Postharvest Biology and Technology, 25, 1-14. Van, M. U. W., Van Iberen Nijsse, J., & Keijzer, K. (2001). Processes and xylem antimicrobial properties involved in dehydration dynamics of cut flowers. Acta Horticulturae. 543, 207– 211. https://doi.org/10.17660/ActaHortic.2001.543.25 Wagner, G. J. (1979). Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant physiology, 64(1), 88–93. https://doi.org/10.1104/pp.64.1.88 Wu, B., Huang, R., Sahu, M., Feng, X., Biswas, P., & Tang, Y.J. (2010). Bacterial responses to Cu-doped TiO2 nanoparticles. Science of the Total Environment, 408 (7), 1755-1758. https://doi.org/10.1016/j.scitotenv.2009.11.004 Yagi, M. I., Elgemaby M. N. A., Ismael M. I. A., & Almubarak M. A. A. (2014). Prolonging of the vase life of Gerbera jamesonii treatment with sucrose before and during simulated transport. International Journal of Sciences: Basic and Applied Research, 18, 254–262. Yan, A. & Chen, Z. (2019). Impacts of silver nanoparticles on plants: a focus on the phytotoxicity and underlying mechanism. International Journal of Molecular Science,. 20(5), 1003. https://doi.org/10.3390/ijms20051003 Zahedi, S. M., Karimi, M., & Teixeira da Silva, J. A. (2020). The use of nanotechnology to increase quality and yield of fruit crops. Journal of the Science of Food and Agriculture, 100(1), 25–31. https://doi.org/10.1002/jsfa.10004 | ||
آمار تعداد مشاهده مقاله: 24 تعداد دریافت فایل اصل مقاله: 19 |