
تعداد نشریات | 162 |
تعداد شمارهها | 6,683 |
تعداد مقالات | 72,021 |
تعداد مشاهده مقاله | 128,872,376 |
تعداد دریافت فایل اصل مقاله | 101,653,143 |
MARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES | ||
Journal of Sciences, Islamic Republic of Iran | ||
مقاله 8، دوره 13، شماره 3، آذر 2002 اصل مقاله (100.95 K) | ||
چکیده | ||
In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in . The results can be generalized to an r-dimensional array of random variables under condition , thus, extending Choi and Sung’s result [7] of one dimensional case for negatively dependent random variables. | ||
عنوان مقاله [English] | ||
- | ||
چکیده [English] | ||
- | ||
آمار تعداد مشاهده مقاله: 879 تعداد دریافت فایل اصل مقاله: 1,201 |