![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,037 |
تعداد مشاهده مقاله | 125,522,512 |
تعداد دریافت فایل اصل مقاله | 98,782,161 |
پایش سطح برف حوضۀ سد شاهچراغی با استفاده از تصاویر NOAA-AVHRR | ||
پژوهش های جغرافیای طبیعی | ||
مقاله 2، دوره 45، شماره 3، آذر 1392، صفحه 13-29 اصل مقاله (1.71 M) | ||
نوع مقاله: مقاله کامل | ||
شناسه دیجیتال (DOI): 10.22059/jphgr.2013.35832 | ||
نویسندگان | ||
محمدابراهیم بنی حبیب* 1؛ فریماه سادات جمالی2؛ بهرام ثقفیان3 | ||
1دانشیار گروه مهندسی آبیاری و زهکشی پردیس ابوریحان، دانشگاه تهران | ||
2کارشناس ارشد مهندسی منابع آب، پردیس ابوریحان، دانشگاه تهران | ||
3استاد پژوهشکدة حفاظت خاک و آبخیزداری، تهران | ||
چکیده | ||
پایش سطح برف نمایندۀ میزان پوشش برف بوده و عامل مهمی در پیشبینی جریان حوضه با استفاده از مدلهای هیدرولوژی است. هدف این پژوهش بررسی تغییرات سطح برف حوضۀ سد شاهچراغی در شمال استان سمنان، طی دورۀ بیستودوساله است تا بتوان از سری زمانی سطح برف بهدستآمده، بهمنزلۀ دادههای ورودی مدل پیشبینی جریان ورودی سد استفاده کرد. نبود ایستگاهها و دادههای هواشناسی و برفسنجی مناسب در سطح حوضه، بر اهمیت کاربرد سنجش از دور برای تعیین سطح برف میافزاید. از این رو، پوشش برف با جمعآوری تصاویر NOAA-AVHRR و بهکمک دو روش تحلیل آستانه برپایۀ آلبدو باندهای مرئی و دمای درخشندگی باندهای حرارتی برای جداسازی برف، بر اساس نوع سنجندۀ ماهواره محاسبه شد و تفاوت دو روش جداسازی برف از پدیدههای دیگر بررسی شد. نتایج نشان میدهند که سطح پوشش برف محاسبهشده از تصویر سنجندۀ AVHRR-3 در حدود 4 درصد بیشتر از سطح برف محاسبهشده از تصویر سنجندۀ AVHRR-2 است. همچنین نتیجۀ بررسی روند تغییرات سطح برف از سال 1986 تا 2007 میلادی به دو روش رگرسیون خطی و من ـ کندال نشان میدهد که سری زمانی سطح برف روندی ندارد. | ||
کلیدواژهها | ||
سنجش از دور؛ دمای درخشندگی؛ NOAA-AVHRR؛ روند تغییرات سطح برف؛ سد شاهچراغی | ||
عنوان مقاله [English] | ||
Detection of the Snow Cover Area Using NOAA-AVHRR in Shahcheraghi Dam Basin | ||
نویسندگان [English] | ||
Mohammad Ebrahim Banihabib1؛ Farimah Sadat Jamali2؛ Bahram Saghafian3 | ||
1Associate Prof., Dep. of Irrigation and Drainage Engineering, College of Abureihan, University of Tehran | ||
2M.Sc. Water Resources Engineering Graduate, Dep. of Irrigation and Drainage Engineering, College of Abureihan, University of Tehran | ||
3Prof. of Soil Conservation and Watershed Management Research Institute (SCWMRI) | ||
چکیده [English] | ||
Extended Abstract Introduction Snow, as one of the basic factors of water supply, plays an important role in water resources management, especially in areas with cold winters and warm summers. The data obtained from snow gauges as well as temperature and precipitation time series data are generally being used to develop experimental models in order to estimate the spatial and temporal distribution of snow in watersheds. However, when reliable snow or other necessary climatic data records do not exist, using proper substitutes becomes essential. Hence, the snow cover area (SCA) derived from satellite images can be used as a representative of the amount of snow in a basin. Moreover, Remote Sensing (RS) is a useful tool in identifying snow and calculating SCA in mountainous regions with low accessibility and deficiency of snow gauges. Accordingly, the SCA time series data can then be used as input dataset in flow forecasting by hydrologic models. This paper aims to study the snow cover area of Shahcheraghi Dam basin in order to collect the necessary input data for developing dam inflow forecasting models. The basin is located in the north of Semnan province, Iran. The area of the basin is 1373km2 and the annual precipitation and mean temperature of the basin are 124mm and 12°c, respectively. Since there is no active snow gauges within the basin and also there is only one weather station with reliable temperature records in the region, NOAA satellite images have been used for defining the SCA. Methodology In this paper snow cover area detection in Shahcheraghi dam basin has been studied using NOAA-AVHRR images in a 22-year period from 1986 to 2007. In order to improve the precision of calculated monthly SCAs, an image per 10 days was processed (3 images per month). The highest value of SCA among the three calculated values in each month is selected as the final SCA data of the month. Since during this period of time two different sensors of AVHRR-2 and AVHRR-3 have recorded data in different spectral bands, it is necessary to use different algorithms in separating snow from other phenomena including cloud and land cover. By employing the differences between the spectral characteristics of snow compared with other phenomena, the snow covered area can be separated. Therefore, two threshold algorithms are used to separate SCAs. These algorithms are based on grouped conditions of comparing albedo of bands 1 and 2 and brightness temperature values of thermal bands. The most significant difference between the conditions in these methods is using the albedo of band 3A (1.6μm) in AVHRR-3. On the other hand, it is necessary to evaluate the numerical difference among the snow separation methods as they may significantly affect the statistic parameters of the time series. Moreover, two trend detection methods are used to examine whether significant trends in the time series exist. The hypothesis-based linear regression and non-parametric Mann-Kendall methods are applied to the maximum annual SCA data. Results and Discussion Based on the NOAA-AVHRR image properties, snow cover area is detected by the aforementioned threshold algorithms. The results show that the maximum amount of SCA occurs in January. Generally the snow settlement in the basin is from December to April while there is no record of snow from May to September, which is due to the abrupt air temperature rise in spring. Furthermore, the difference between the snow separation methods is analyzed by comparing two successive images of the basin, taken by different sensors on 5th November 2003. One of the images contains channel 3B which includes thermal infrared band and the other contains channel 3A that scans near infrared wavelengths. Accordingly, the SCA of AVHRR-3 sensor which contains channels 3A has been calculated 4% more than the SCA of AVHRR-2 which records channel 3B. Moreover, the result of applying trend detection tests shows that the SCA time series has no evident linear or monotonic trend. Conclusion The trend analysis on the SCA dataset has demonstrated that no significant statistic trend exists in the SCA time series. Moreover, the difference between calculated values of the SCA derived from two different AVHRR-2 and AVHRR-3 sensors does not affect the reliability of the SCA dataset, considering the area of the basin. Hence, as a representative of the snow in Shahcheraghi basin, it is possible to consider the calculated snow cover area data as an appropriate input for hydrologic flow forecasting models. | ||
کلیدواژهها [English] | ||
Brightness Temperature, NOAA-AVHRR, remote sensing, Shahcheraghi Reservoir, Snow Cover Area Trend | ||
آمار تعداد مشاهده مقاله: 3,185 تعداد دریافت فایل اصل مقاله: 2,131 |