تعداد نشریات | 161 |
تعداد شمارهها | 6,488 |
تعداد مقالات | 70,089 |
تعداد مشاهده مقاله | 123,107,099 |
تعداد دریافت فایل اصل مقاله | 96,342,129 |
Intelligent Online Store: User Behavior Analysis based Recommender System | ||
Journal of Information Technology Management | ||
مقاله 10، دوره 7، شماره 2، مهر 2015، صفحه 385-406 اصل مقاله (570.97 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jitm.2015.53884 | ||
نویسندگان | ||
Mohamadreza Karimi Alavije1؛ Shiva Askari* 2؛ Sirvan Parasteh3 | ||
1Assistant Prof., Business Management, Faculty of Management and Accounting University of Allameh Tabatabayi, Tehran, Iran. | ||
2MSc Student, Business Management, Faculty of Management and Accounting, Allameh Tabatabayi University, Tehran, Iran. | ||
3MSc, Artifiacial Intelligent, Faculty of Computer Engineering, Iran University of Science and Technology, Tehran, Iran. | ||
چکیده | ||
Recommender systems provide personalised recommendations to users, helping them find their ideal items, also play a key role in encouraging users to make their purchases through websites thus leading to the success of online stores. The collaborative filtering method is one of the most successful techniques utilized in these systems facilitating the provision of recommendations close to that of the customer's taste and need. However the proliferation of both customers and products on offer, the technique faces some issues such as "cold start" and scalability. As such in this paper a new method has been introduced in which user-based collaborative filtering is used at a base method along with a weighted clustering of users based upon demographics in order to improve the results obtained from the system. The implementation of the results of the algorithms demonstrate that the presented approach has a lower RMSE, which means that the system offers improved performance and accuracy and that the resulting recommendations are closer to the taste and preferences of the users. | ||
کلیدواژهها | ||
Clustering؛ Collaborative filtering؛ demographics؛ Recommender System | ||
عنوان مقاله [English] | ||
فروشگاه اینترنتی هوشمند: سیستم پیشنهاددهندۀ مبتنی بر تحلیل رفتار کاربران | ||
چکیده [English] | ||
سیستمهای پیشنهاددهندهای که با ارائۀ پیشنهادها شخصیسازی میشوند و به کاربران در یافتن محصولی که علاقه دارند، کمک میکنند، میتوانند در ترغیب مشتریان به خرید از وبسایت و در نتیجه موفقیت فروشگاههای آنلاین، نقش کلیدی ایفا کنند. روش پالایش همکارانه، یکی از موفقترین روشهای بهکاررفته در این سیستمها است که توانایی ارائۀ پیشنهادهایی نزدیک به نظر کاربران را دارد، اما با افزایش تعداد کاربران و محصولات، با مشکلاتی مانند شروع سرد و مقیاسپذیری مواجه میشوند. به همین دلیل در این پژوهش روش جدیدی معرفی شده است که ضمن بهکارگیری الگوریتم روش پالایش همکارانۀ مبتنی بر کاربر بهمثابۀ رویکرد پایه، از ترکیب وزندار خوشهبندی کاربران بر اساس اطلاعات جمعیتشناختی آنها نیز برای دستیابی به نتایج بهتر از سیستم، استفاده کرده است. نتایج پیادهسازی الگوریتم نشان داد رویکرد ارائهشده، ریشۀ میانگین مربعات خطای کمتری دارد که بهمعنای عملکرد بهتر و دقت بیشتر آن است و پیشبینیهای حاصل از آن با ترجیح و سلیقۀ کاربران همخوانی بیشتری دارد. | ||
کلیدواژهها [English] | ||
اطلاعات جمعیت شناختی, خوشهبندی, رویکرد پالایش همکارانه, سیستم پیشنهاددهنده | ||
مراجع | ||
Abbasi, M., Monsefi, R. & Astiri, A. (2011). A hybrid recommender system using the natural process technique og Persian language. The first international conference on Persian language processing, Semnan, Semnan University, 6 September. (in Persian) Adomavicius, G. & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. Knowledge and Data Engineering, IEEE Transactions on, 17(6): 734-749. Anderson, C. & Hiralall, M. (2009). Recommender systems for e-shops. Business Mathematics and Informatics paper. Vrije Universiteit, Amsterdam. Astiri, A., Kahani, M. & Pour-Gholami, F. (2011). A survey of calculating the semantic similarity of words and sentences using a network of words. The first international conference on Persian language processing, Semnan, Semnan University, 6 September. (in Persian) Berkhin, P. (2006). A survey of clustering data mining techniques. In Grouping multidimensional data (pp. 25-71). Springer, Berlin Heidelberg. DOI: 10.1007/3-540-28349-8_2. Cho, Y. H., Kim, J. K. & Kim, S. H. (2002). A personalized recommender system based on web usage mining and decision tree induction. Expert Systems with Applications, 23(3): 329-342. Choi, K., Yoo, D., Kim, G. & Suh, Y. (2012). A hybrid online-product recommendation system: Combining implicit rating-based collaborative filtering and sequential pattern analysis. Electronic Commerce Research and Applications, 11(4): 309-317. Dai, Y., Ye, H. & Gong, S. (2009). Personalized recommendation algorithm using user demography information. In Knowledge Discovery and Data Mining, 2009. WKDD 2009. Second International Workshop on (pp. 100-103). IEEE. Gao, F., Xing, C., Du, X. & Wang, S. (2007). Personalized service system based on hybrid filtering for digital library. Tsinghua Science & Technology, 12(1): 1- 8. Gupta, J. & Gadge, J. (2014). A framework for a recommendation system based on collaborative filtering and demographics. In Circuits, Systems, Communication and Information Technology Applications (CSCITA), 2014 International Conference on (pp. 300-304). IEEE. Iwata, T. (2008). Probabilistic user behavior models in online stores for recommender systems. Doctoral Thesis, Graduate School of Informatics, Kyoto University. Josiassen, A., Assaf, A. G. & Karpen, I. O. (2011). Consumer ethnocentrism and willingness to buy: Analyzing the role of three demographic consumer characteristics. International Marketing Review, 28(6): 627-646. Leimstoll, U. & Stormer, H. (2007). Collaborative recommender systems for online shops. AMCIS 2007 Proceedings, 156. Available in: http://aisel.aisnet.org /cgi/viewcontent.cgi?article=1666&context=amcis2007. Liang, Z., Bo, X. & Jun, G. (2009). An Approach of Finding Localized Preferences Based-On Clustering for Collaborative Filtering. In Web Information Systems and Mining, 2009. WISM 2009. International Conference on (pp. 19-22). IEEE. Linden, G., Smith, B. & York, J. (2003). Amazon. Com recommendations: Item-toitem collaborative filtering. Internet Computing, IEEE, 7(1): 76-80. Moghaddam, S. G. & Selamat, A. (2011). A scalable collaborative recommender algorithm based on user density-based clustering. Data Mining and Intelligent Information Technology Applications (ICMiA), 2011 3rd International Conference on (pp. 246-249). IEEE, 24-26 Oct. Peck, J. & Childers, T. L. (2006). If I touch it I have to have it: Individual and environmental influences on impulse purchasing. Journal of business research, 59(6): 765-769. Schafer, J. B., Konstan, J. A. & Riedl, J. (2001). E-commerce recommendation applications. Data Mining and Knowledge Discovery, 5 (1-2): 115-153. Shabib, N. & Nemat Bakhsh, M.A. & Dehkurdi, S.A. (2007). Recommende systems application in e-commerce. 4th National e-Commerce Conferenc, Ministry of Commerce, Tehran. (in Persian) Su, X. & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in artificial intelligence, 2009 (4). DOI:10.1155/2009/ 421425. Vandenbulcke, V., Lecron, F., Ducarroz, C., & Fouss, F. (2013). Customer segmentation based on a collaborative recommendation system: Application to a mass retail company. In Proceedings of the 42nd Annual Conference of the European Marketing Academy. Vozalis, M. & Margaritis, K. G. (2004). Collaborative filtering enhanced by demographic correlation. In AIAI Symposium on Professional Practice in AI, of the 18th World Computer Congress. Yoon, V. Y., Hostler, R. E., Guo, Z. & Guimaraes, T. (2013). Assessing the moderating effect of consumer product knowledge and online shopping experience on using recommendation agents for customer loyalty. Decision Support Systems, 55(4): 883-893. Zeng, Z. (2009). An intelligent e-commerce recommender system based on web mining. International journal of business and management, 4(7): 10. | ||
آمار تعداد مشاهده مقاله: 3,170 تعداد دریافت فایل اصل مقاله: 2,262 |