تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,321 |
تعداد دریافت فایل اصل مقاله | 97,205,992 |
Estimation of metallurgical parameters of flotation process from froth visual features | ||
International Journal of Mining and Geo-Engineering | ||
مقاله 7، دوره 49، شماره 1، شهریور 2015، صفحه 75-81 اصل مقاله (624.58 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/ijmge.2015.54366 | ||
نویسنده | ||
Mohammad Massinaei* | ||
Mining Engineering Department, University of Birjand, P.O. Box 97175-376, Birjand, Iran | ||
چکیده | ||
The estimation of metallurgical parameters of flotation process from froth visual features is the ultimate goal of a machine vision based control system. In this study, a batch flotation system was operated under different process conditions and metallurgical parameters and froth image data were determined simultaneously. Algorithms have been developed for measuring textural and physical froth features from the captured images. The correlation between the froth features and metallurgical parameters was successfully modeled, using artificial neural networks. It has been shown that the performance parameters of flotation process can be accurately estimated from the extracted image features, which is of great importance for developing automatic control systems. | ||
کلیدواژهها | ||
froth flotation؛ image analysis؛ metallurgical parameters؛ process control | ||
مراجع | ||
[1] Wills, B.A., Napier-Munn, T.J. (2006). Mineral Processing Technology. Elsevier Science & Technology Books. [2] Cubillos, F.A., Lima, E.L. (1997). Identification and optimizing control of rougher flotation circuit using an adaptable hybrid-neural model. Minerals Engineering, 10 (7), 707-721. [3] Holtham P.N., Nguyen, L.K. (2002). On-line analysis of froth surface in coal and mineral flotation using JKFrothCam, International Journal of Mineral Processing, 64, 163-180. [4] Haavisto, O., Kaartinen, J. (2009). Multichannel reflectance spectral assaying of zinc and copper flotation slurries. International Journal of Mineral Processing, 93 (2), 187-193. [5] Moolman, D.M., Aldrich, C. and Van Deventer, J.S.J. (1995). The interpretation of flotation froth surfaces by using digital image analysis and neural networks. Chemical Engineering Science, 50, 3501-3513. [6] Moolman, D.W., Eksteen, J.J., Aldrich, C. and Van Deventer, J.S.J. (1996a). The significance of flotation froth appearance for machine vision control. International Journal of Mineral Processing, 48(3-4), 135-158. [7] Moolman, D.W., Aldrich, C., Schmitz, G.P.J. and Van Deventer, J.S.J. (1996b). The interrelationship between surface froth characteristics and industrial flotation performance. Minerals Engineering, 9 (8), 837-854. [8] Kaartinen, J., Hatonen, J., Hyotyniemi, H. and Miettunen, J. (2006). Machine vision based control of zinc flotation-A case study. Control Engineering Practice, 14, 1455-1466. [9] Vanegas, C. and Holtham, P. (2008). On-line froth acoustic emission measurements in industrial sites. Minerals Engineering, 21, 883-888. [10] Aldrich, C., Marais, C., Shean, B.J. and Cilliers, J.J. (2010). On-line monitoring and control of froth flotation systems with machine vision: A review. International Journal of Mineral Processing, 96, 1-13. [11] Morar, S.H., Harris, M.C. and Bradshaw, D.J. (2012). The use of machine vision to predict flotation performance. Minerals Engineering, 36-38, 31-36. [12] Mehrabi, A., Mehrshad, N., Massinaei, M. (2014). Machine vision based monitoring of an industrial flotation cell in an iron flotation plant. International Journal of Mineral Processing, 133, 60-66. [13] Aldrich, C., Moolman, D.W., Bunkell S.-J., Harris, M.C. and Theron, D.A. (1997). Relationship between surface froth features and process conditions in the batch flotation of a sulphide ore. Minerals Engineering, 10 (11), 1207-1218. [14] Banford, A., Aktas, Z., Woodburn, E. (1998). Interpretation of the effect of froth structure on the performance of froth flotation using image analysis. Powder Technology, 98, 61-73. [15] Bonifazi, G., Massacci, P. and Meloni, A. (2000). Prediction of complex sulfide flotation performances by a combined 3D fractal and colour analysis of the froths. Minerals Engineering, 13 (7), 737-746, 2000. [16] Hargrave, J., Hall, S. (1997). Diagnosis of concentrate grade and mass flowrate in tin flotation from colour and surface texture analysis. Minerals Engineering, 10, 613-621. [17] Hargrave, J., Miles, N., Hall, S. (1996). The use of grey level measurement in predicting coal flotation performance. Minerals Engineering, 9, 667-674. [18] Jahedsaravani, A., Marhaban, M.H., Massinaei, M. (2014). Prediction of the metallurgical performances of a batch flotation system by image analysis and neural networks, Minerals Engineering, 69, 137-145. [19] Gadkari, D. (2004). Image Quality Analysis Using GLCM. MSc. Thesis in Modeling and Simulation in the College of Arts and Sciences, University of Central Florida, Orlando, Florida. [20] Marais, C., Aldrich, C. (2011). Estimation of platinum flotation grades from froth image data. Minerals Engineering, 24, 433-441. [21] Gui, W., Liu, J., Yang, C., Chen, N., Liao, X. (2013). Color co-occurrence matrix based froth image texture extraction for mineral flotation. Minerals Engineering, 46-47, 60-67 | ||
آمار تعداد مشاهده مقاله: 2,156 تعداد دریافت فایل اصل مقاله: 1,997 |