تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,095,895 |
تعداد دریافت فایل اصل مقاله | 97,202,593 |
تخمین تمرکز ذرات معلق (PM10) در جو با استفاده از دادههای سنجش از دور ماهوارهای و زمینپایه و پراسنجهای هواشناختی: کاربست شبکۀ عصبی مصنوعی | ||
فیزیک زمین و فضا | ||
مقاله 13، دوره 41، شماره 3، مهر 1394، صفحه 499-510 اصل مقاله (1020.14 K) | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2015.54528 | ||
نویسندگان | ||
مسعود خوش سیما1؛ سیده سمانه ثابت قدم* 2؛ عباسعلی علی اکبری بیدختی3 | ||
1پژوهشکدۀ سامانههای ماهوارهای، پژوهشگاه فضایی ایران | ||
2گروه فیزیک فضا، مؤسسۀ ژئوفیزیک دانشگاه تهران | ||
3گروه فیزیک فضا، موسسه ژئوفیزیک دانشگاه تهران | ||
چکیده | ||
در مقالۀ حاضر، تمرکز روزانۀ ذرات معلق با قطر کمتر از 10 میکرون (PM10)با استفاده از نمایههای نورشناخت حاصل از دادههایسنجش از دور و پراسنجهای هواشناختی تخمین زده شده است. برای این پژوهش از دادههای حاصل از سنجندۀ مادیس (ماهوارههای آکوا و ترا) و دادههای دستگاه نورسنج خورشیدی شامل عمق نوری هواویزها (AOD)، نمای آنگستروم (α) و ضریب تیرگی آنگستروم (β) و همچنین دادههای هواشناختی شامل فشار، دما، رطوبت، تندی و جهت باد و دادههای مربوط به تمرکز PM10 برای دورۀ مطالعاتی دسامبر 2009 تا سپتامبر 2010 منطقۀ زنجان که دارای اقلیمی خشک بهویژه در تابستان است، استفاده شده است. مقایسۀ نمایههای نورشناخت هواویز در دو فصل تابستان و زمستان نشان میدهد که اندازۀ متوسط ذرات و تیرگی جو در تابستان در مقایسه با زمستان بیشتر است. برای تخمین تمرکز PM10 با استفاده از نمایههای نورشناخت جو و پراسنجهای هواشناختی، از دو روش همبستگی سادۀ چندمتغیره و شبکۀ عصبی مصنوعی با توابع پایۀ شعاعی استفاده شده است.نتایج نشان میدهد ضریب همبستگی بین مقادیر مشاهداتی با مقادیر پیشبینیشده برای روش همبستگی سادۀ چندمتغیره و شبکۀ عصبی بهترتیب برابر 62/0و 82/0 است. ازاینرو استفاده از شبکۀ عصبی که قادر به پیشبینی روابط پیچیده بین پراسنجهای ورودی و خروجی است، در مقایسه با روش همبستگی سادۀ چندمتغیره، برای برآورد تمرکز PM10مناسبتر است. | ||
کلیدواژهها | ||
شبکۀ عصبی؛ ضرایب آنگستروم؛ عمق نوری؛ گردوغبار؛ هواویزهای جوی | ||
عنوان مقاله [English] | ||
Estimation of atmospheric particulate matter (PM10) concentration based on remote sensing measurements and meteorological parameters: application of artificial neural network | ||
نویسندگان [English] | ||
Masoud Khoshsima1؛ Seyede Samane Sabet Ghadam2؛ Abasali Aliakbari Bidokhti3 | ||
1Satellite Research Institute, Iranian Space Research Center, Tehran, Iran | ||
3Institute of Geophysics, University of Tehran | ||
چکیده [English] | ||
Suspended aerosols in the atmosphere have strong impact on the global climate. They influence the earth’s radiation budget by scattering or absorbing both incoming and outgoing radiation. Aerosols in troposphere are caused by natural sources, such as dust, sea-spray and volcanoes and also by anthropogenic sources, such as combustion of fossil fuels and biomass burning activities and from gas-to-particle conversion processes. Those have been implicated in human health effects and visibility reduction in urban and regional areas. In this work, the aerosol optical indices were calculated by using the CIMEL sun photometer i.e. passive measurement. These indices have been monitored during December 2009 to September, 2010, in a semi urban area in the Zanjan region in Iran, which has a continental climate. Aerosol optical depth (AOD) is a dimensionless number that characterizes the total absorption and scattering effects of particles in the direct or scattered sunlight. The value of AOD was measured by means of a sun-photometer in a ground station, located at the University of Zanjan (36.7 N, 48.5 E). The information on the aerosol number distribution was defined by Angstrom in 1929. The wavelength exponent is calculated according to the Angstrom formula. Hence, the wavelength exponent may be calculated from the slope of a linear fit of lnAOD against lnλ. The value of 1.3 for α represents an average value for the mean atmospheric conditions. An empirical relationship between the wavelength exponent and the dominant geometric diameter of the aerosol particles was found by Angstrom. Besides such ground-based observations of AOD, which are point-based, aerosol optical depth measurements taken by MODIS on board of the Terra and Aqua satellites are used for further analysis. Satellites are able to yield timely information on the atmospheric conditions at the regional and global scales inexpensively. The MODIS sensor onboard the Terra/Aqua Earth Observation System satellites captures the radiative energy from the target in 36 spectral bands over the visible light, near infrared and infrared spectra. The raw imagery has a spatial resolution ranging from 250 m to 1 km at a ground swath of 2,330 km. Standard meteorological variables, such as air pressure, relative humidity, wind speed and direction are also measured at Zanjan synoptic station. Moreover, the concentration of particle mass under 10 μm (PM10) which is measured hourly by the Zanjan environmental protection bureau, is also used. In this study, the relationship between the suspended particulate matter (PM10 ) concentration and aerosol optical indices such as AOD, Angstrom coefficients (α,β) and meteorological parameters such as wind speed and direction, and relative humidity were considered. Two forecasting techniques are presented in this paper for predicting the average hourly PM10 concentration. The first one is the Multivariate Linear Regression (MLR) and the second technique is an Artificial Neural Network (ANN) model, based on Radial Basis Function (RBF). Multiple linear regression models were developed with several sets of data (aerosol optical properties and meteorological data as predictor). The results show that correlation Coefficient between predicted values and observed values for MLR model and ANN model were 0.62 and 0.81, respectively. The impact of wind direction on PM10 concentration prediction is weak in MLR model. The results also show that MLR could not predict PM10 concentration as well as ANN model. | ||
کلیدواژهها [English] | ||
Aerosol optical depth (AOD), Angstrom coefficients (α, β), Artificial Neural Network, linear regression model, suspended particulate matter (PM) | ||
مراجع | ||
خوش سیما، م.، بیدختی، ع. ع.، احمدی گیوی، ف.، 1392. تعیین عمق نوری هواویزها با استفاده از دادههای دید افقی و سنجش از دور در دو منطقه شهری در ایران مجله فیزیک زمین و فضا، 39، 1، 163-17. Aleksander, I., and Morton, H., 1995. An introduction to neural computing, 2nd ed., Int.Thompson Comput. Press, New York.
Alfoldy, B., Osan , Z., Toth, S., Torok, A., Harbusch, C., and Jahn, D., 2007. Aerosol optical depth, aerosol composition and air pollution during summer and winter conditions in Budapest. Science of the Total Environment 383, 141–163.
Al-Saadi, J., Szykman, J., Pierce, B., Kittaka, C., Neil, D., et al., 2005. Improving national air quality forecasts with satellite aerosol observations, Bull. Am. Meteorol. Soc., 86 (9), 1249 –1264.
Angstrom, A., 1961. Technique of determining the turbidity of the atmosphere.Tellus, 13, 214 –231.
Baumer, D., Vogel, B., Versick, S., Rinke, R., Mohler, O., and Schnaiter, M., 2008. Relationship of visibility, aerosol optical thickness and aerosol size distribution in an ageing air mass over South-West Germany, Atmos. Environ., 42, 989–998.
Barladeanu, R., Stefan, S., and Radulescu, R., 2012. Correlation between the particulate matter (PM10) mass concentrations and aerosol optical depth in Bucharest, Romania, Romanian Reports in Physics, Vol. 64, 4, 1085–1096.
Birmili, W., Wiedensohler, A., and Eintzenberga, J., 2001. Atmospheric particle number size distribution incentralEurope'Statistical relations to air masses and meteorology. J. Geophysical Research, 106, 32, 5-32.
Broomhead, D., and Lowe, D., 1988. Multivariable functional interpolation and adaptive networks. Complex Syst., 2, 321–355.
Brunekreef, B. and Holgate, S., 2002. Air pollution and health, Lancet 360, 1233–1242.
Demir, G., 2010. An artificial neural network-based model for short-term predictions of daily mean pm10 concentrations, Journal of Environmental Protection and Ecology, 11, 1163-1171.
Filip, L., and Stefan, S., 2011. Study of the correlation between the near-ground PM10 mass concentration and the aerosol optical depth (AOD), Journal of Atmospheric and Solar Terrestrial Physics., 73, 1883–1889.
Gardner, M. and Dorling, S., 1998. Artificial neural networks: A review of applications in the atmospheric sciences, Atmos. Environ., 32, 2627– 2636.
Giorgi, F. and Meleux, F., 2007. Modelling the regional effects of climate change on air quality, Comp. Rend. Geosci., 339, 721–733.
Gupta, P., and Christopher S., 2009a. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach, J. Geophys. Res., 114, D14205.
Gupta, P., and Christopher, S., 2009b. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: A neural network approach, J. Geophys. Res., 114, D20205.
Gupta, P., Christopher, S., Jun Wang, C., Gehrig, R., and Naresh Kumar, Y., 2006. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos. Environ., 40, 5880–5892.
Haykin, S., 1999. Neural Networks, Macmillan College Publishing Company.
Hooyberghs, J., Mensink, C., Dumont, G., Fierens, F., and Brasseur, O., 2005. A neural network forecast for daily average PM 10 concentrations in Belgium. Atmospheric Environment, 39(18), 3279-3289.
Jol, A. and Kielland, G., 1997. Air Pollution in Europe 1997, European Environment Agency, Copenhagen, Denmark.
Kanniah, K., Zaman, N., Lim, H., and Reba, M., 2014. Monitoring particulate matters in urban areas in Malaysia using remote sensing and ground-based measurements. In SPIE Remote Sensing. International Society for Optics and Photonics. 92420J.
Kaufman, Y. J., Tanre, D., Gordon, H., Nakajima, T., Lenoble, J., Frouin, R., Grass, H., Herman, B., King, M. and Teillet, P., 1997. Passive remote sensing of tropospheric aerosol and amospheric correction for the aerosol effect. J. Geophys. Res., 102 , 16 815–16 830.
Khoshsima, M., Ahmadi-Givi, F., Bidokhti, A.A., Sabetghadam, S., 2014. Impact of meteorological parameters on relation between aerosol optical indices and air pollution in a sub urban area, Journal of Aerosol Science, 68, 46–57.
Kokhanovsky, A., 2008. Aerosol Optics, Light absorption and scattering by particles in the atmosphere.Springer, Berlin, Praxis publication limited, UK.149 pp.
Liu. Y, Franklin, Y., Kahn, R., and Koutrakis, P., 2007. Using aerosol optical thickness to predict ground-level PM2.5 concentrations in the St. Louis area: A comparison between MISR and MODIS, Remote Sensing of Environment, 107, 33–44.
Molnar, A., and Meszaros, E., 2001. On the relation between the size and chemical composition of aerosol particles and their optical properties. AtmosphericEnvironment, 35, 5053-5058.
Nicolaides, A., 2010. Pure mathematics: Determinants and matrices, Edition, 2, illustrated. Publisher, Pass Publications.
O’Neil, N., Royer, A., Cote, P., and McArthur, L., 1993. Relations between optically derived aerosols parameters, humidity, and air quality data in urban atmosphere, J. Appl. Meteorol., 32, 1484-1497.
Perez, P., Trier, A. and Reyes, J., 2000. Prediction of PM2.5 concentrations several hours in advance using neural networks in Santiago, Chile, Atmos. Environ., 34, 1189– 1196.
Perez, P., and Reyes, J., 2006. An integrated neural network model for PM10 forecasting, Atmos. Environ., 40, 2845 – 2851.
Ping Guo, J., Zhang, X., Che, H., Gong, S., An, X., Cao, C., Guang, J., Zhang, H., Wang, Y., Zhang, X., Xue, M., and Li, X., 2009. Correlation between PM concentrations and aerosol optical depth in Eastern China. Atmospheric Environment, 43, 37-51.
Retalis, A., Hadjimitsis, D.G., Michaelides, S., Chrysoulakis, N., Clayton, C.R.I. and Themistocleous, K., 2010. Comparison of Aerosol Optical Thickness with In-Situ Visibility Data over Cyprus.Nat. Hazards Earth Syst. Sci. 10: 421–428.
Seinfeld, H. and Pandis, N., 1998. Atmospheric chemistry and physics, from air pollution to climate change. New York, John Wiley & Sons, pp. 1191.
Smirnov, A., Holben, B., Eck, T., Dubovik, O., and Slutsker, I., 2000. Cloud screening and quality control algorithms for Aeronet database, Rem. Sensing Environment, 73, 337-349.
Schaap, M., Apituley, A., Timmermans, R.M.A., Koelemeijer, R.B.A., de Leeuw, G., 2008. Exploring the relation between aerosol optical depth and PM2.5 at Cabauw, the Netherlands. Atmos. Chem. Phys. 9, 909–925.
Tian. J and Chen, D., 2010. A semi-empirical model for predicting hourly ground-level fine particulate matter (PM2.5) concentration in southern Ontario from satellite remote sensing and ground-based meteorological measurements, Remote Sensing of Environment, 114, 221-229.
Mahiyuddin, W., Sahani, M., Aripin, R., Latif, M., Thach, T., and Wong, C., 2013. Short-term effects of daily air pollution on mortality. Atmospheric Environment, 65, 69-79.
Wu.,Y., Guo, J., Zhang, X., and Li, X., 2011. Correlation between pm concentrations and aerosol optical depth in eastern china based on bp neural networks, Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International, 3308 – 3311.
Yahi, H., B. Marticorena, S. Thiria, B. Chatenet, C. Schmechtig, J. L. Rajot, and M. Crepon , 2013.Statistical relationship between surface PM10 concentration and aerosol optical depth over the Sahel as a function of weather type, using neural network methodology, J. Geophys. Res. Atmos., 118, 265–281. | ||
آمار تعداد مشاهده مقاله: 3,066 تعداد دریافت فایل اصل مقاله: 1,615 |