تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,637 |
تعداد دریافت فایل اصل مقاله | 97,206,261 |
Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis | ||
International Journal of Mining and Geo-Engineering | ||
مقاله 12، دوره 49، شماره 1، شهریور 2015، صفحه 131-142 اصل مقاله (1.63 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/ijmge.2015.54636 | ||
نویسندگان | ||
Moslem Moradi1؛ Omid Asghari* 1؛ Gholamhossein Norouzi1؛ Mohammad Riahi2؛ Reza Sokooti3 | ||
1Simulation and Data Processing Laboratory, Mining Engineering Department, University of Tehran, Iran | ||
2Institute of Geophysics, University of Tehran, Iran | ||
3NIOC Exploration Directorate, Iran | ||
چکیده | ||
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior information in Bayesian statistics. Data integration leads to a probability density function (named as a posteriori probability) that can yield a model of subsurface. The Markov Chain Monte Carlo (MCMC) method is used to sample the posterior probability distribution, and the subsurface model characteristics can be extracted by analyzing a set of the samples. In this study, the theory of stochastic seismic inversion in a Bayesian framework was described and applied to infer P-impedance and porosity models. The comparison between the stochastic seismic inversion and the deterministic model based seismic inversion indicates that the stochastic seismic inversion can provide more detailed information of subsurface character. Since multiple realizations are extracted by this method, an estimation of pore volume and uncertainty in the estimation were analyzed. | ||
کلیدواژهها | ||
Bayesian theory؛ Geostatistics؛ stochastic seismic inversion؛ uncertainty | ||
مراجع | ||
[1].Journel, A. (1989). Fundamentals of geostatistics in five lessons. Volume 8, Short Course in Geology, American Geophysical Union, Washington D.C. [2].Haas, A. and Dubrule, O. (1994). Geostatistical Inversion –A Sequential Method for Stochastic Reservoir Modelling Constrained by Seismic Data. First Break 12(11), 561-569. [3].Tarantola, A. (1987). Inverse problem theory: methods for data fitting and model parameter estimation. Elsevier Science Publ. Co., Inc. [4].Hansen, T.M., Journel, A.G., Tarantola, A. and Mosegaard, K. (2006). Linear inverse Gaussian theory and geostatistics. Geophysics, 71(6), 101 –111. [5].Gunning, J. and Glinsky, M. (2004). Delivery: An open-source model-based Bayesian seismic inversion program. Computers & Geosciences, No. 30, P. 619–636. [6].Sengupta, M. and Bachrach, R. (2007). Uncertainty in seismic-based pay volume estimation: Analysis using rock physics and Bayesian statistics. The Leading Edge, No. 26, P. 184–189. [7].Bosch, M., Mukerji, T. and Gonzalez, E.F. (2010). Seismic inversion for reservoir properties combining statistical rock physics and geostatistics. A review: Geophysics. 5 (5), 165-176. [8].Zhe-Yuan, H., Li-Deng, G., Xiao-Feng, D., Ling-Gao, L. and Wang, J. (2012). Key parameter optimization and analysis of stochastic seismic inversion. Journal of Applied Geophysics, 9 (1), 49 – 56. [9].Mosegaard, K., & Tarantola, A., (1995). Monte Carlo Sampling of Solutions to Inverse Problems. J. Geophys. 100 (12), 431-447. [10]. Journel, A.G. and Huijbregts, C.J. (1978). Geostatistical Reservoir Characterization Constrained by 3D Seismic Data. 58th Annual International Meeting of the European Association of Exploration Geophysicists. [11]. Pendrel, J.V. and Van Riel, P. (1997). Estimating Porosity From 3D Seismic Inversion and 3D Geostatistics. 67th Annual International Meeting of the Society of Exploration Geophysicists. [12]. Hameed, M., Al-Khaled, O., Al-Qallaf, H., Edwards, K. and Dutta, P. (2011). Highly detailed reservoir characterization through geostatistical inversion to assess porosity distribution in the Ratawi limestone, Umm Gudair field, Kuwait. SEG Annual Meeting. [13]. Jason Company (2009), Basic interpretation techniques for seismic inversion (user manual for Fugro-Jason 8.1). [14]. Asrizal, M., Hadi, J., Bahar, A. and Sihombing, J.M. (2006). Uncertainty quantification by using stochastic approach in pore volume calculation, Wayang Windu geothermal field, W. Java, Indonesia. Thirty-first Workshop on Geothermal Reservoir Engineering, Stanford university, California. | ||
آمار تعداد مشاهده مقاله: 2,287 تعداد دریافت فایل اصل مقاله: 2,259 |