تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,123,233 |
تعداد دریافت فایل اصل مقاله | 97,231,228 |
A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization | ||
Journal of Sciences, Islamic Republic of Iran | ||
مقاله 7، دوره 26، شماره 3، آذر 2015، صفحه 273-279 اصل مقاله (643.37 K) | ||
نوع مقاله: Original Paper | ||
نویسندگان | ||
M. Rezghi* 1؛ M. Yousefi2 | ||
1Department of Computer Science, Faculty of Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran | ||
2Department of Applied Mathematics, Faculty of Sciences, Sahand University of Technology, Tabriz, Islamic Republic of Iran | ||
چکیده | ||
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high computational cost. In this paper, based on the properties of norms and orthogonal transformations we propose a framework to project NMF’s convex sub-problems to smaller problems. This projection reduces the time of finding NMF factors. Also every method on ALS class can be used with our proposed framework. | ||
کلیدواژهها | ||
Nonnegative matrix factorization؛ Alternating least squares؛ initialization؛ Orthogonal transformation | ||
آمار تعداد مشاهده مقاله: 1,467 تعداد دریافت فایل اصل مقاله: 1,326 |