![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 162 |
تعداد شمارهها | 6,578 |
تعداد مقالات | 71,072 |
تعداد مشاهده مقاله | 125,686,521 |
تعداد دریافت فایل اصل مقاله | 98,915,318 |
تغییرات زمانیـ مکانی بارش دورة سرد سال در ایران (1950-2009) | ||
پژوهش های جغرافیای طبیعی | ||
مقاله 7، دوره 47، شماره 3، مهر 1394، صفحه 421-433 اصل مقاله (1.14 M) | ||
نوع مقاله: مقاله کامل | ||
شناسه دیجیتال (DOI): 10.22059/jphgr.2015.55339 | ||
نویسندگان | ||
مهدی صداقت* 1؛ حمید نظری پور2 | ||
1استادیار اقلیمشناسی، دانشگاه پیام نور تهران | ||
2استادیار گروه محیطزیست، پژوهشکدة علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفتة صنعتی کرمان | ||
چکیده | ||
مقالة پیش رو در جستوجوی الگوهای مکانی روندهای مقدار بارش دورة سرد سال برای ایران طی سالهای 1950 تا 2009 است. به این منظور، از دادههای ماهانة بازسازیشدة مرکز اقلیمشناسی بارش جهانی با جداسازی مکانی 5/0Í 5/0درجه در ایران (از 44 تا 5/63 درجة طول شرقی و 25 تا 40 درجة عرض شمالی) استفاده شد. ارزیابی دادههای شبکهای با استفاده از 190 ایستگاه کشور با بهرهگیری از روش رگرسیون وزندار جغرافیایی مبین 76/0 =R2 بود. تحلیل اکتشافی زمینآمار با استفاده از روشهای خودهمبستگی فضایی عمومی و محلی صورت گرفت. نتایج خودهمبستگی فضایی عمومی نشان داد که دادههای بارش کشور در تمام ماهها، دارای خودهمبستگی فضایی مثبت معنیداری (الگوهای خوشهای) است. آزمون خودهمبستگی فضایی محلی نشان داد که هر ماه، اقلیم بارشی خود را دارد. تحلیل روند مقادیر موران عمومی با استفاده از آزمون ناپارامتریک تاو کندال نشان داد که تغییرات الگوهای مکانی بارشی در هیچیک از ماهها، روندهای کاهشی و افزایشی چندان معناداری ندارند. مقایسة زمان رویداد مقادیر شاخص موران عمومی پایین با زمان خشکسالیها بیانکنندة ارتباط تنگاتنگی بین تغییرات مقادیر شاخص موران تضعیفشده و وقوع خشکسالیهای فراگیر ایران است. پیشنهاد میشود شواهد کمآبیهای کشور در توزیع زمانی- مکانی دیگر متغیرهای اقلیمی همچون دما و تبخیر جستوجو شود. | ||
کلیدواژهها | ||
ایران؛ توزیع زمانی- مکانی؛ خودهمبستگی فضایی موران؛ رگرسیون وزندار جغرافیایی | ||
عنوان مقاله [English] | ||
Spatiotemporal Variations of Cold Period Precipitation in Iran (1950-2009) | ||
نویسندگان [English] | ||
Mahdi Sedaghat1؛ Hamid Nazaripour2 | ||
1Assistant Professor of Climatology, Faculty of Geography, Payame Noor University, Tehran, Iran | ||
2Assistant Professor of Climatology, Department of Environment, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran | ||
چکیده [English] | ||
Introduction Precipitation plays an important role in the global energy and water cycle. It is important for assessment and management of land use, agriculture and hydrology such as flood and drought risk reduction to know about the amount of precipitation reaching the ground water. Assessment of climate change and its effects require long-term rainfall analysis in all spatial scales. Growing concern in the scientific community (Nicholls and Alexander, 2007) is about whether there is a significant change in the amount of precipitation?. About 29% reduction in the daily maximum water flow caused higher temperatures and increased evaporation with any change in rainfall causing drought in southern Canada during the years 1847 to 1996 (Zhang, Harvey, Hogg and Yuzyk, 2001). Recently summer drought caused by unusually dry heating in the areas related to tropical West Pacific and Indian Ocean (Andreadis, Clark, Wood, Hamletand and Lettenmaier, 2005; Pagano and Garen, 2005) including studies of climate change on global precipitation regimes. Germer (2008) has examined monthly variations in rainfall, floods, droughts and runoff in the Yangtze River Basin in China. In another study, Dao (2004) studied the daily variation of rainfall in semi-arid regions of northern China. Raziyy and Azizi (2008) said that topography and latitude are main factors of controlling the precipitation in the west part of Iran. Also, Asakereh (1386) has investigated spatiotemporal variation in Iran precipitation. The results of their study indicated that about 51.4% of rainfall areas in Iran have been changed. In this context, the author aims to explore the development of spatiotemporal changes of the rainfall pattern with access to the available and reliable database and the new approach to extract patterns and possible trends in the data. This paper investigated the spatial patterns of precipitation amount trends in cold period of year, for Iran between 1950 and 2009. Methodology We used reanalysis of monthly data of GPCC with 0.5*0.5 spatial resolution in Iran (From 44E until 63.5E and 25N until 40N) and global & local Moran’s spatial autocorrelation methods. Global Precipitation Climatology Center data accuracy is measured by the geographical weighted regression (GWR) method. Spatial autocorrelation of precipitation data were extracted by global Moran Index. This index shows only the overall clustering of precipitation data. Therefore, to detect the different local patterns spatial autocorrelation, local Moran was used. The index measured spatial differences in rainfall amounts between each grid point and its neighboring points and evaluated its significant level. Trend analysis of the spatial patterns was configured based on Man Kendall’s τ nonparametric test. Results and Discussion Geographically weighted regression between the global climatology center data and station data showed that the gridded data have verified to be acceptable to be replaced by the station data. Rainfall Gridded data and station data indicated an average correlation of 76%. Global spatial autocorrelation results and precipitation data in all of the months indicate significant positive spatial autocorrelation (or clustered pattern). Local spatial autocorrelation results of each month show proprietary precipitation pattern and monthly precipitation. They entailed any significant trends. October shows the lowest average index values and dispersion in rainfall patterns. Unlike the months of December rainfall patterns have shown concerted. A spatial clustering map shows, usually in October, a strong spatial cluster is formed on the southern coast of the Caspian Sea. However, during the months of November and December, a strong spatial cluster formed in Zagros on rain again. In February and March the Caspian cluster is reduced in proportion severity. Conclusion Temporal variations of the No, high - high points and No, low-low points in all months indicated no significant change. This suggests a lack of space to expand or reduce the size of the cluster rainfall during the study period and comparison between pervasive drought events. Low value of Global Moran’s Index indicates a strong relationship between them. Thus, it is required to be used for other variables for water defect researches. Comparing of general Moran index values and widespread drought in Iran showed that the low index values are based on the years of drought. The results of this research suggest that the evidence of dehydration in other climatic variables such as temperature and evaporation. | ||
کلیدواژهها [English] | ||
Exploratory Spatial Data Analysis (ESDA), Iran, Moran’s spatial autocorrelation, spatiotemporal distribution | ||
مراجع | ||
10. Asakereh, H. (2007). "Spatial temporal variations of precipitation over the past decade". Geography and Development. No. 10. pp. 145-164. (In Persian).
11. Chang, H.J., Kim, .C.H. and Franczyk, J. (2007). "Flood hazard in urban areas of Korea and implications of climate change". Presented at Int. Workshop on the Science and Practice of Flood Disaster Management in Urbanizing Monsoon Asia (Chiang Mai, April) available at http://www.sea-user.org/mweb.php?pg=86.
12. Dao-Yi and Gong (2004). "Daily precipitation changes in the semi-arid region over northern China". Journal of Arid Environments. Vol. 59. Issue. 4. December 2004. pp. 771-784.
13. Fotheringham, A.S., Brunsdon, C. and Charlton, M.E. (2002).GeographicallyWeighted Regression: The Analysis of Spatially Varying Relationships.Wiley. Chichester.
14. Fraley, G., Jankowski, P. and Giovando, C. (2006). A Visual Approach to Data Mining Spatial and Temporal Change. Department of Geography. San Diego State University.
15. George, S.S. (2007). "Stream flow in the Winnipeg river basin, Canada: trends, extremes and climate linkages". J. Hydrol. 332. pp. 396–411.
16. Germer, M. (2008). "Seasonal precipitation changes in the wet season and their influence on flood/drought hazards in the Yangtze River Basin, China". Quaternary International. Vol. 186. Issue. 1. 1 August 2008. pp. 12-21.
17. Goodchild (1986).Spatial autocorrelation (CATMOG47). Norwich: Geobooks.UK.
18. Intergovernmental Panel for Climate Change (2007). The Physical Science Basis. available at http://www.ipcc.ch/
19. Koenig, W.D. (2002). Global patterns of environmental synchrony and the Moran effect". Ecography. 25. pp. 283–288.
20. Mindy, S.C. and Weber, B.A. (2005). "Does Local Job Growth Reduce Poverty?". Agricultural and Resource Economics 213 Ballard Extension Hall Oregon State University Corvallis. Oregon 97331 Phone 541.737.1415
21. Nicholls, N. and Alexander, L. (2007). "Has the climate become more variable or extreme?". Progress 1992–2006 Prog. Phys. Geogr. 31. pp. 77–87.
22. O’Sullivan, D. and Unwin, D.J. (2003). Geographic Information Analysis. (Hoboken: Wiley).
23. Pagano, T. and Garen, D. (2005). "A recent increase in western US stream flow vari-ability and persistence". J. Hydrometeorol. 6. pp. 173-179.
24. Raziei, T. and Aziz, Q. (2008)."Spatial distribution of annual rainfall in West Iran". The study of Physical Geography. No. 65. pp. 93-108. (In Persian).
25. Raziei, T., Daneshkar Arasteh, P. and Saghafian, B. (2005). "Annual Rainfall Trend Analysis in Arid and Semi-arid Regions of Central and Eastern Iran". Quarterly of Water and Wastewater. No. 54. pp. 73-81. (In Persian).
26. Sadeghi, A.R., Alijani, B. and Ziaeian, P. (2012). "Application of spatial autocorrelation techniques for the analysis of heat islands in Tehran". Journal of Geographical Sciences and Applied Research. No. 30. pp. 67-90. (In Persian).
27. Schneider, U., Becker, A., Meyer-Christopher, A., Ziese, M. and Rudolf, B. (2010). "Global Precipitation Climatology Centre (GPCC)". Deutscher Wetterdienst. Offenbach, a.M.. Germany. Dec. 2010.
28. Schuurman, N., Peters, P.A. and Oliver, L.N. (2009). "Are Obesity and Physical Activity Clustered? A Spatial Analysis Linked to Residential Density". Epidemiology. advance online publication 23 April 2009. doi: 10.1038/oby.2009.119.
29. Sedaghat, M. (2011). "Defining and Spatial Analysis of The Suitable Drought Monitoring Model in Iran". PhD. Thesis. Tehran: Kharazmi University. School of Geographical Sciences. (In Persian).
30. Zhang, X.B., Harvey, K.D., Hogg, W.D. and Yuzyk, T.R. (2001). "Trends in Canadian stream flow". Water Resour. Res. 37. pp. 987-998.
31. Zolfaghari, H., Hashemi, R. and Fashy, M. (2008). "Review the maximum daily precipitation than the annual rainfall than". Journal of Geographical Research. Number 92. 15571-15594.
| ||
آمار تعداد مشاهده مقاله: 2,093 تعداد دریافت فایل اصل مقاله: 1,471 |