تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,101,497 |
تعداد دریافت فایل اصل مقاله | 97,208,140 |
مقایسه دقت برآورد ارزش اصلاحی ژنومی برای صفات تولید در گاوهای هلشتاین ایران با روشهای پارامتری و ناپارامتری | ||
تولیدات دامی | ||
مقاله 1، دوره 18، شماره 1، فروردین 1395، صفحه 1-11 اصل مقاله (563.67 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jap.2016.55354 | ||
نویسندگان | ||
یحیی محمدی1؛ محمد مهدی شریعتی* 2؛ سعید زره داران3؛ محمد رزم کبیر4؛ محمدباقر صیادنژاد5؛ محمدباقر زندی5 | ||
1دانشجوی دکتری، گروه علوم دامی، دانشکدۀ کشاورزی، دانشگاه فردوسی مشهد، ایران | ||
2استادیار، گروه علوم دامی، دانشکدۀ کشاورزی، دانشگاه فردوسی مشهد، ایران | ||
3استاد، گروه علوم دامی، دانشکدۀ کشاورزی، دانشگاه فردوسی مشهد، ایران | ||
4استادیار، گروه علوم دامی، دانشکدۀ کشاورزی، دانشگاه کردستان، ایران | ||
5مرکز اصلاح نژآد و بهبود تولیدات دامی کشور | ||
چکیده | ||
انتخاب ژنومی ابزاری جدید برای برآورد ارزشهای اصلاحی صفات کمّی با استفاده از نشانگرهای مولکولی است. معیار کارایی انتخاب ژنومی، دقت پیشبینی ارزشهای اصلاحی ژنومی است. در تحقیق حاضر، دقت پیشبینی ژنومی روشهای پارامتری و ناپارامتری در 345 گاو هلشتاین محاسبه شد. صفات مطالعهشده مقدار شیر، میزان چربی، میزان پروتئین، و سلولهای سوماتیک شیر بود. دو روش پارامتری بهترین پیشبینی نااریب خطی ژنومیک (GBLUP) و بیز B و دو روش ناپارامتری فضای هیلبرت با هستۀ بازآفرین (RKHS) و شبکههای عصبی (NN) برای برآورد تأثیرات نشانگرها و پیشبینی و دقت ارزشهای اصلاحی ژنومی استفاده شد. دقت پیشبینی ژنومی در دامنۀ 39/0 (برای سلولهای سوماتیک) تا 73/0 (برای تولید چربی) محاسبه شد. بیز B و دو روش ناپارامتری در مقایسه با روش GBLUP دچار کوچککردن بیشتر پیشبینیها شده بودند (منحنی ضریب رگرسیون ارزش اصلاحی ژنومی بر ارزش اصلاحی کلاسیک بیشتر از یک بهدست آمد). درمقایسه با همۀ روشها دقت بیز B بیشتر شد. میانگین مربعات خطای پیشبینی برای روش GBLUP به نسبت دیگر روشها برای صفات مطالعهشده کمتر برآورد شد. مدل رگرسیون بیز B برای انتخاب ژنومی در این جمعیت مطلوب بود، ولی برای بهبود دقت با این روش نیاز به کاهش آبرفتگی پیشبینی در این روش است. | ||
کلیدواژهها | ||
انتخاب ژنومی؛ دقت انتخاب؛ روشهای پارامتری و ناپارامتری؛ نشانگرهای مولکولی | ||
عنوان مقاله [English] | ||
The accuracy of genomic breeding value for production trait in Iranian Holstein Dairy Cattle using parametric and non-parametric methods | ||
نویسندگان [English] | ||
Yahya Mohammadi1؛ Mohammad Mahdi Shariati2؛ Saeed Zerehdaran3؛ Mohammad Razmkabir4؛ Mohammad Bagher Sayyadnejad5؛ Mohammad Bagher Zandi5 | ||
1Ph.D. Student, Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran | ||
2Assistant Professor, Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran | ||
3Professor, Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran | ||
4Assistant Professor, Department of Animal Science, Faculty of Agriculture, University of Kurdestan, Iran | ||
5M.Sc., Animal Breeding Center of Iran, Karaj, Iran | ||
چکیده [English] | ||
Genomic Selection (GS) is a tool for prediction of breeding values for quantitative traits. For a successful application of GS, accuracy of predicted genomic breeding value (GEBV) is a key issue to consider. Here we investigated the accuracy of GEBV in 345 genotyped Iranian Holstein cattle. The study was performed on milk, fat, protein yield and somatic cell count. Four methods G-BLUP, Bayes B, Reproducing kernel Hilbert Spaces (RKHS) and Neural Networks (NN) were used to predict genomic breeding values and their accuracies. The GEBV accuracies varied between 0.39 for somatic cell count to 0.73 for fat yield. Bayes B gave the highest accuracies among methods. Bayes B and non- parametric methods tended to produce inflated predictions (slope of the regression of GBV on EBV greater than 1). However, in all traits, lower estimates of MSE were obtained using G- BLUP. Bayes B regression model are of interest for future applications of genomic selection in this population, but further improvements are needed to reduce deflation of their predictions. | ||
کلیدواژهها [English] | ||
Genomic Selection, Molecular markers, parametric and non-parametric prediction, selection accuracy | ||
مراجع | ||
2 . Beckmann J and Soller M (1983) Restriction fragment length polymorphisms in genetic improvement: methodologies, mapping and costs. TAG Theoretical and Applied Genetic. 67(1): 35-43. 3 . Charfeddine N, Rodriguez-Ramilo ST, Jimenez JA, Carabano MJ and Gonzalez-Recio O (2013) Non parametric vs. GBLUP Model for genomic selection evaluation with large reference population in Holstein cattle. INTERBULL BULLETIN. 47: 23-25. 4 . Daetwyler HD, Calus MPL, Pong-Wong R, De Los Campos G and Hickey JM (2013) Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics. 193: 347-365. 5 . De los Campos G and Perez PR (2012) Bayesian Generalized Linear Regression BGLR. R Package. http://bglr.r-forge.rproject.org/ 6 . Dekkers JCM, Mathur PK and Knol EF (2010) Genetic Improvement of the Pig, pp. 390–425 in The Genetics of the Pig, Ed. 2, edited by Rothschild MF and Ruvinsky A. CABI, Cambridge, MA. 7 . Dekkers JCM (2007) Prediction of response to marker-assisted and genomic selection using selection index theory. Journal Animal Breeding Genetic. 124: 331-341. 8 . De Roos APW, Schrooten C and Druet T (2011) Genomic breeding value estimation using genetic markers, inferred ancestral haplotypes, and the genomic relationship matrix. Dairy Science. 94: 4708-4714. 9 . Duchemin SI, Colombani C, Legarra A, Baloche G, Larroque H, Astruc JM, Barillet F, Robert-Granié C and Manfredi E) (2012) Genomic selection in the French Lacaune dairy sheep breed. Dairy Science. 95: 2723-2733. 10 . Erbe M, Hayes BJ, Matukumalli LK, Goswami S, Bowman PJ, Reich CM, Mason BA and Goddard ME (2012) Improving accuracy of genomic predictions within and between dairy cattle breeds with imputed high-density single nucleotide polymorphism panels. Dairy Science. 95: 4114-4129. 11 . Espigolan R, Baldi F, Boligon AA, Souza FR, Gordo DG, Tonussi RL, Cardoso DF, Oliveira HN, Tonhati H, Sargolzaei M, Schenkel FS, Carvalheiro R, Ferro JA and Albuquerque LG (2013) Study of whole genome linkage disequilibrium in Nellore cattle. BMC Genomics. 14: 305. 12 . Hayes BJ, Bowman PJ, Chamberlain AJ and Goddard ME (2009) Invited review: genomic selection in dairy cattle: progress and challenges. Dairy Science. 92: 433-443. 13 . Howard R, Carriquiry AA and Beavis WD (2014) Parametric and non parametric statistical methods for genomic selection of traits with additive and epistatic genetic architectures. G3. 4: 1027-1046. 14 . Guo G, Lund MS, Zhang Y and Su G (2010) Comparison between genomic predictions using daughter yield deviation and conventional estimated breeding value as response variables. Animal Breeding Genetic. 127: 423-432. 15 . Gianola D and Van Kaam JBCHM (2008) Reproducing Kernel Hilbert Spaces Regression methods for genomic assisted prediction of quantitative traits. Genetics. 178: 2289-2303. 16 . Goddard ME and Hayes BJ (2007) Genomic selection. Animal Breeding Genetic. 124(6): 323-330. 17 . Kearsey MJ and Farquhar AGL (1998) QTL analysis in plants; where are we now? Heredity. 80: 137-142. 18 . Konstantinov KV and Hayes BJ (2010) Comparison of BLUP and Reproducing kernel Hilbert spaces methods for genomic prediction of breeding values in Australian Holstein Friesian cattle. Proceedings of the 9th WCGALP, Leipzig, Germany. 19 . Legarra A, Robert-Granie C, Manfredi E and Elsen JM (2008) Performance of genomic selection in mice. Genetics. 180: 611-618. 20 . Meuwissen TH, Hayes BJ and Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics. 157: 1819-1829. 21 . Meuwissen TH (2007) Genomic selection: marker assisted selection on a genome wide scale. Journal of Animal Breeding Genetic. 124(6): 321-322. 22 . Neves H, Carvalheiro HR and O’Brien AMP, Utsunomiya YT, Do Carmo AS, Schenke FS, Sölkner J, McEwan JC, Tassell CPV, Cole JB, Da Silva MV, Queiroz SA, Sonstegard TS and Garcia JF (2014) Accuracy of genomic predictions in Bos indicus (Nellore) cattle. Genetics Selection Evolution. 46:17-25. 23 . Okut H, Wu X, JM Rosa G, Bauck S, Woodward BW, Schnabel RD, Taylor JF and Gianola D (2013) Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models. Genetics Selection Evolution. 45: 34. 24 . Pérez-Rodiguez P, Gianola D, Rosa G, Weigel K and Crossa J (2013) Technical Note: An R package for fitting Bayesian regularized neural networks with applications in animal breeding. Journal of Animal Science. In press. 25 . Van Raden PM, Tassell CPV, Wiggans GR, Sonstegard TS and Schnabel RD (2009) Invited review: reliability of genomic predictions for North American Holstein bulls. Journal of Dairy Science. 92: 16-24. | ||
آمار تعداد مشاهده مقاله: 3,103 تعداد دریافت فایل اصل مقاله: 1,145 |