تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,037 |
تعداد مشاهده مقاله | 125,516,942 |
تعداد دریافت فایل اصل مقاله | 98,777,703 |
Modeling of streamflow- suspended sediment load relationship by adaptive neuro-fuzzy and artificial neural network approaches (Case study: Dalaki River, Iran) | ||
Desert | ||
مقاله 9، دوره 20، شماره 2، مهر 2015، صفحه 177-195 اصل مقاله (526.02 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jdesert.2015.56481 | ||
نویسندگان | ||
Mohammad Tahmoures* 1؛ Ali Reza Moghadamnia2؛ Mohsen Naghiloo3 | ||
1PhD Student, Faculty of Natural Resources, University of Tehran, Karaj, I.R. Iran | ||
2Associate Professor, Faculty of Natural Resources, University of Tehran, Tehran, Iran | ||
3MSc. Graduate, International Desert Research Center, University of Tehran, Tehran, Iran | ||
چکیده | ||
Modeling of stream flow–suspended sediment relationship is one of the most studied topics in hydrology due to its essential application to water resources management. Recently, artificial intelligence has gained much popularity owing to its application in calibrating the nonlinear relationships inherent in the stream flow–suspended sediment relationship. This study made us of adaptive neuro-fuzzy inference system (ANFIS) techniques and three artificial neural network approaches, namely, the Feed-forward back-propagation (FFBP), radial basis function-based neural networks (RBF), geomorphology-based artificial neural network (GANN) to predict the streamflow suspended sediment relationship. To illustrate their applicability and efficiency,, the daily streamflow and suspended sediment data of Dalaki River station in south of Iran were used as a case study. The obtained results were compared with the sediment rating curve (SRC) and regression model (RM). Statistic measures (RMSE, MAE, and R2) were used to evaluate the performance of the models. From the results, adaptive neuro-fuzzy (ANFIS) approach combined capabilities of both Artificial Neural Networks and Fuzzy Logic and then reflected more accurate predictions of the system. The results showed that accuracy of estimations provided by ANFIS was higher than ANN approaches, regression model and sediment rating curve. Additionally, relating selected geomorphologic parameters as the inputs of the ANN with rainfall depth and peak runoff rate enhanced the accuracy of runoff rate, while sediment loss predictions from the watershed and GANN model performed better than the other ANN approaches together witj regression equations in Modeling of stream flow–suspended sediment relationship. | ||
کلیدواژهها | ||
Adaptive neuro-fuzzy inference system؛ Artificial Neural Networks؛ Dalaki river؛ geomorphology؛ suspended sediment | ||
مراجع | ||
Agarwal, A., R. Singh, S. Mishra, P. Bhunya, 2005. ANNbased sediment yield models for Vamsadhara river basin (India). Water SA, 31(1); 95–100. Agil, M., I. Kita, A. Yano, S. Nishiyama, 2007. Analysis and prediction of flow from local source in a river basin using a Neuro-fuzzy modeling tool. J Environ Manag, 85; 215–23. Alp, M., H.K. Cigizoglu, 2007. Suspended sediment load simulation by two artificial neural network methods 22; 2–13. Altun, H., A. Bilgil, B.C. Fidan, 2007. Treatment of multidimensional data to enhance neural network estimators in regression problems. Expert Syst Appl, 32(2); 599– 605. ASCE Task Committee on the application of ANNs in hydrology, 2000. Artificial neural networks in hydrology, II: hydrologic application. J Hydrol Eng, 5(2); 124–37. Bazoffi, P., G. Baldasarre, S. Vasca, 1996. Validation of the PISA2 model for the automatic assessment of reservoir sediment deposition. In Proceedings of the International Conference on Reservoir Sediment Deposition, Albertson M (ed.). Colorado State University; 519–528. Bhattacharya, B., R. Price, D. Solomatine, 2005. Datadriven modelling in the context of sediment transport. Phys Chem Earth, 30; 297–302. Broomhead, D., D. Lowe, 1988. Multivariable functional interpolation and adaptive networks. Complex Systems, 2; 321-355. Brown, M., C. Harris, 1994. Neuro-fuzzy adaptive modelling and control. Upper Saddle River, New Jersey: Prentice-Hall. Cigizoglu, H.K., 2005. Application of the generalized regression neural networks to intermittent flow forecasting and estimation. ASCE Journal of Hydrologic Engineering, 10(4); 336e341. Cigizoglu, H.K., M. Alp, 2006. Generalized regression neural network in modelling river sediment yield. Adv Eng Softw, 37; 63–8. Dogan, A., H. Demirpence, M. Cobaner, 2008. Prediction of groundwater levels from lake levels and climate data using ann approach. Water SA, 34(2); 1–10. Eberhart, R.C., R.W. Dobbins, 1990. Neural Network PC Tools: A Practical Guide. Academic Press, San Diego, 414 pp. El-Bakyr, M.Y., 2003. Feed forward neural networks modeling for KeP interactions. Chaos, Solitions and Fractals, 18(3); 995-1000 (Elsevier). Engelund, F., E. Hansen, 1967. A monograph on sediment transport in alluvial streams. Copenhagen: Danish Technical (Teknisk Forlag). Ferguson, R.I., 1986. River loads underestimated by rating curves. Water Resour Res, 22; 74–6. Hagan, M.T., M.B. Menhaj, 1994. Training feed forward techniques with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5(6); 989-993. Haykin, S., 1994. Neural Networks: a comprehensive foundation. New York: MacMillan. Hornik, K., M. Stinchcombe, H. White, 1989. Multilayer feedforward networks are universal approximators. Neural Netw, 2(5); 359–66. Azamathulla, H.M., M.C. Deo, P.B. Deolalikar, 2008, Alternative neural networks to estimate the scour below spillways, Advances in Engineering Software, 39(8); 689-698. Horowitz, A.J., 2008. Determining annual suspended sediment and sediment-associated trace element and nutrient fluxes. Sci Total Environ, 400; 315–43. Jain, S.K., 2001. Development of integrated sediment rating curves using Anns. J Hydraul Eng, 127(1); 30–7. Jang, J.S.R., 1993. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Sys. Manage and Cybernetics, 23(3); 665–685. Jang, J.S.R., C.T. Sun, 1995. Neuro-fuzzy modelling and control. Proc IEEE, 83; 378–406. Jang, J.S.R., C.T. Sun, E. Mizutani, 1997. Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Upper Saddle River, New Jersey, USA: Prentice Hall. Kim, B., S.E. Lee, M.Y. Song, J.H. Choi, S.M. Ahn, K.S. Lee, et al, 2008. Implementation of artificial neural networks (ANNs) to analysis of inter-taxa communities of benthic microorganisms and macroinvertebrates in a polluted stream. Sci Total Environ, 390; 262–74. Kisi, O., 2004a. River flow modeling using artificial neural networks. Journal of Hydrologic Engineering, ASCE 9(1); 60–63. Kisi, O., 2004b. Multi-layer perceptrons with Levenberg– Marquardt optimization algorithm for suspended sediment concentration prediction and estimation. Hydrological Sciences Journal, 49(6); 1025–1040. Kisi, O., 2005. Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrological Sciences Journal, 50(4); 683–696. Kisi, O., E. Karahan, Z. Sen, 2006. River suspended sediment modelling using a fuzzy logic approach. Hydrol Process, 20(20); 4351–4362. Kisi, O., T. Haktanir, M. Ardiclioglu, O. Ozturk, E. Yalcin, S. Uludag, 2008. Adaptive neuro-fuzzy computing technique for suspended sediment estimation. Adv Eng Softw, 40; 438–444. Legates, D.R., G.J. McCabe Jr, 1999. Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resour Res, 35(1); 233–241. Tuan, L.T., T. Shibayama, 2003. Application of GIS to Evaluate Long-Term Variation of Sediment due to Coastal Environment, Coastal Engineering Journal, JSCE, 45(2); 275-293. Lohani, A.K., N.K. Goel, K.K. Bhatia, 2007. Deriving stage–discharge–sediment concentration relationships using fuzzy logic. Hydrol Sci J, 52(4); 793–807. Masters, T., 1993. Practical neural network recipes in C++. San Diego (CA): Academic Press. Mirbagheri, S.A., K.K. Tanji, R.B. Krone, 1988a. Sediment characterization and transport in Colusa Basin Drain. J Environ Eng, 114(6); 1257–73. Mirbagheri, S.A., K.K. Tanji, R.B. Krone, 1988b. Simulation of suspended sediment in Colusa Basin Drain. J Environ Eng, 114(6); 1274–93. Nagy, H.M., K. Watanabe, M. Hirano, 2002. Prediction of load concentration in rivers using artificial neural network model. J Hydraul Eng, 128(6); 588–95. Nash, J.E., J.V. Sutcliffe, 1970. River flow forecasting through conceptual models part I — a discussion of principles. J Hydrol, 10(3); 282–90. Nayak, P.C., K.P. Sudheer, D.M. Rangan, K.S. Ramasastri, 2004. A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291(1– 2); 52–66. Nourani, V., A.A. Mogaddam, A.O. Nadiri, 2008. An ANN-based model for spatiotemporal groundwater level forecasting. Hydrol Process, 22; 5054–5066. Nourani, V., M.T. Alami, M.H. Aminfar, 2009. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng Appl Artif Intell, 22; 466–472. Nourani, V., M. Komasi, A. Mano, in press. A multivariate ANN-wavelet approach for rainfall-runoff modeling. Water Resources Management, Published online, doi:10.1007/s11269-009-9414-5. Ocampo-Duque, W., M. Schuhmacher, J.L. Domingo, 2007. A neural-fuzzy approach to classify the ecological status in surface waters. Environ Pollut, 148; 634–641. Poggio, T., F. Girosi, 1990. Regularization algorithms for learning that are equivalent to multilayer networks. Science, 2247; 978-982. Raghuwanshi, N., R. Singh, L. Reddy, 2006. Runoff and sediment yield modeling using artificial neural networks: Upper Siwane River, India. J Hydrol Eng, 11(1); 71–79. Rajaee, T., S.A. Mirbagheri, M. Zounemat-Kermani, V. Nourani, 2009. Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Science of the Total Environment, 407; 4916-4927. Rajaee, T., V. Nourani, M. Zounemat-Kermani, K. Ozgur, 2011. River Suspended Sediment Load Prediction: Application of ANN and Wavelet Conjunction Model . Journal of Hydrologic Engineering, ASCE, 16(8); 613- 627. Raman, H., N. Sunilkumar, 1995. Multivariate modelling of water resources time series using artificial neural networks. Hydrol Sci J, 40(2); 145–63. Restrepo, J.D., J.P.M. Syvitski, 2006. Assessing the Effect of Natural Controls and Land Use Chane on Sediment Yield in a Major Andean River: The Magdalena Drainage Basin, Colombia. Ambio: a Journal of the Human Environment, 35; 44-53. Sahoo, G.B., C. Ray, E. Mehnert, D.A. Keefer, 2006. Application of artificial neural networks to assess pesticide contamination in shallow groundwater. Sci Total Environ, 367; 234–51. Salas, J.D., J.W. Delleur, V. Yevjevich, W.L. Lane, 1980. Applied modeling of hydrological time series. Denver: Water Resources Publications. Sarangi, A., A.K. Bhattacharya, 2005. Comparison of Artificial Neural Network and regression models for sediment loss prediction from Banha watershed in India. Agricultural Water Management, 78; 195–208. Sayed, T., A. Tavakolie, A. Razavi, 2003. Comparison of adaptive network based fuzzy inference systems and Bspline neuro-fuzzy mode choice models. Water Resources Research, 17(2); 123–130. Schuller, B., 1999. Automatisches Verstehen gesprochener mathematischer Formeln. Diploma thesis, Technische Universit¨at M¨unchen, Munich, Germany. Sha, W., 2007. Comment on: ‘flow forecasting for a Hawaii stream using rating curves and neural networks’ by G.B. Sahoo and C. Ray. Journal of Hydrology 340 (1–2), 119–121. Journal of Hydrology, 317; 63–80. Sinnakaudan S.K., A.A.B. Ghani, M.S.S, Ahmad, N.A. Zakaria, 2006. Multiple linear regression model for total bed material load prediction. Journal of Hydraulic Engineering, 132(5); 521-528. Tahmoures, M., A. Karimi, 2008. Estimation of Daily Suspended Sediment Yield Based on Neural Networks and Neuro-Fuzzy Technique, Pajouhesh-va-sazandegi Journal, 21; 61–75. Taurino, A.M., C. Distante, P. Siciliano, L. Vasanelli, 2003. Quantitative and qualitative analysis of VOCs mixtures by means of a microsensors array and different evaluation methods. Sensors and Actuators, 93; 117- 125. Tay, J.H., X. Zhang, 1999. Neural fuzzy modeling of anaerobic biological wastewater treatment systems. J.Environ, 125(12); 1149-1159. Tayfur, G., S. Ozdemir, V.P. Singh, 2003. Fuzzy logic algorithm for runoff-induced sediment transport from bare soil surfaces. Adv Water Resour, 26; 1249–1256. Tokar, A.S., P.A. Johnson, 1999. Rainfall runoff modelling using artificial neural networks. J Hydrol Eng, 4(3); 232–239. Tsai, C.H., L.C. Chang, H.C. Chiang, 2009. Forecasting of ozone episode days by cost-sensitive neural network methods. Sci Total Environ, 407; 2124–35. Vanacker, V., M. Vanderschaeghe, G. Govers, E. Willems, J. Poesen, J. Deckers, B. De Biévre, 2009. Linking hydrological, infinite slope stability and land use change models through GIS for assessing the impact of deforestation on landslide susceptibility in high Andean watersheds. Geomorphology, 52; 299-315. Verstraeten, G., J. Poesen, 2001. Factors controlling sediment yield fromsmall intensively cultivated catchments in a temperate humid climate. Geomorphology, 40; 123–44. Williams, G.P., 1989. Sediment concentration versus water discharge during single hydrologic events in rivers. J Hydrol, 111(1–4); 89–106. Yang, C.T., 1996. Sediment transport, theory and practice. New York: McGraw-Hill. Zhu, Y.M., X.X. Lu, Y. Zhou, 2007. Suspended sediment flux modeling with artificial neural network: an example of the Longchuanjiang River in the Upper Yangtze Catchment, China. Geomorphology, 84; 111– 25. Zounemat-Kermani, M., M. Teshnehlab, 2008. Using adaptive neuro-fuzzy inference system for hydrological time series prediction. Appl Soft Comput, 8; 928–936. Zounemat-Kermani, M., A.A. Beheshti, B. Ataie-Ashtiani, S.R. Sabbagh-Yazdi, 2009. Estimation of currentinduced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system. Appl Soft Comput, 9; 746–55. | ||
آمار تعداد مشاهده مقاله: 2,512 تعداد دریافت فایل اصل مقاله: 1,660 |