![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,036 |
تعداد مشاهده مقاله | 125,506,903 |
تعداد دریافت فایل اصل مقاله | 98,770,846 |
Modelling and Optimization of Homogenous Photo-Fenton Degradation of Rhodamine B by Response Surface Methodology and Artificial Neural Network | ||
International Journal of Environmental Research | ||
مقاله 9، دوره 10، شماره 4، دی 2016، صفحه 543-554 اصل مقاله (471.15 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/ijer.2016.59683 | ||
نویسندگان | ||
F. Speck؛ S. Raja* ؛ V. Ramesh؛ V. Thivaharan | ||
Department of Biotechnology, Manipal Institute of Technology, Manipal, Karnataka, 576104, India | ||
چکیده | ||
The predictive ability of response surface methodology (RSM) and artificial neural network (ANN) in the modelling of photo-Fenton degradation of Rhodamine B (Rh-B) was investigated in the present study. The dye degradation was studied with respect to four factors viz., initial concentration of dye, concentration of H2O2 and Fe2+ ions and process time. Central composite design (CCD) was used to evaluate the effect of four factors and a second order regression model was obtained. The optimum degradation of 99.84% Rh-B was obtained when 159 ppm dye, 239 ppm H2O2, 46 ppm Fe2+ were treated for 27 min. The independent variables were fed as inputs to ANN with the percentage dye degradation as outputs. For the optimum percentage dye degradation, a three-layered feed-forward network was trained by Levenberg-Marquardt (LM) algorithm and the optimized topology of 4:10:1 (input neurons: hidden neurons: output neurons) was developed. A high regression coefficient (R2 = 0.9861) suggested that the developed ANN model was more accurate and predicted in a better way than the regression model given by RSM (R2 = 0.9112). | ||
کلیدواژهها | ||
Photo-Fenton process؛ Rhodamine B degradation؛ Response Surface Methodology؛ Artificial Neural Network | ||
آمار تعداد مشاهده مقاله: 3,153 تعداد دریافت فایل اصل مقاله: 2,636 |