تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,116,764 |
تعداد دریافت فایل اصل مقاله | 97,221,543 |
پایش تغییرات ماهانه و فصلی گاز متان با استفاده از دادههای ماهوارۀ GOSAT | ||
پژوهش های جغرافیای طبیعی | ||
مقاله 10، دوره 49، شماره 2، تیر 1396، صفحه 327-340 اصل مقاله (1011.51 K) | ||
نوع مقاله: مقاله کامل | ||
شناسه دیجیتال (DOI): 10.22059/jphgr.2017.62848 | ||
نویسندگان | ||
سید محسن موسوی1؛ سامره فلاحتکار* 2؛ منوچهر فرج زاده3 | ||
1دانشجوی کارشناسی ارشد محیط زیست، دانشکدة منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس | ||
2استادیار گروه محیط زیست، دانشکدة منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس | ||
3استاد گروه سنجش از دور، دانشکدة علوم انسانی، دانشگاه تربیت مدرس | ||
چکیده | ||
تغییر اقلیم و گرمایش جهانی یکی از بزرگترین چالشهای قرن حاضر معرفی شده است. گاز متان، به منزلة یکی از مهمترین گازهای گلخانهای، بهتنهایی مسئول بیش از 18 درصد از گرمایش ناشی از انتشار گازهای گلخانهای است. در این تحقیق از دادههای سطح دو ماهوارة GOSAT، محصولات MOD13Q1 و MOD11C3 ماهوارة MODIS و پارامترهای هواشناسی دما، رطوبت، و بارندگی به منظور بررسی تغییرات ماهانه و فصلی گاز متان در سال 2013 استفاده شد. نتایج نشان داد گاز متان دارای افزایش ثابتی در طول این دوره بوده است؛ به طوری که میزان آن از ppb36/1788 به ppb45/1823 افزایش یافته؛ این موضوع نشاندهندة افزایش ppb 09/35 این گاز در ایران است. گاز متان دارای نوسانات ماهانه است؛ به طوری که حداکثر غلظت این گاز در ماههای اکتبر و سپتامبر و حداقل آن در ماههای مارس و آپریل مشاهده شد. این گاز با متغیرهای دما و LST ارتباط مثبت دارد و با متغیرهای NDVI، رطوبت، و بارندگی دارای ارتباط منفی است. این امر بیانکنندة افزایش غلظت متان در مناطقی با پوشش گیاهی کمتراکمتر و با درجة حرارت بالاتر در ایران است. بنابراین، حفظ پوشش گیاهی طبیعی بهویژه در مناطق گرم و خشک به منظور کاهش غلظت گاز متان توصیه میشود. | ||
کلیدواژهها | ||
پایش ماهوارهای؛ تغییر اقلیم؛ گاز متان؛ GOSAT و MODIS | ||
عنوان مقاله [English] | ||
Monitoring of Monthly and Seasonal Methane Amplitude in Iran using GOSAT Data | ||
نویسندگان [English] | ||
Seyed Mohsen Mousavi1؛ Samereh Falahatkar2؛ Manoucher Farajzadeh3 | ||
1MA in Environmental Science, Faculty of Natural resources and Marine Science, Tarbiat Modares University, Iran | ||
2Assistant professor in Environmental Science, Faculty of Natural resources and Marine Science, Tarbiat Modares University, Iran | ||
3Professor of Geography, Tarbiat Modares University, Iran | ||
چکیده [English] | ||
Introduction Global warming and climate change have been identified as the most important challenges of the current century. Methane as one of the most important greenhouse gasses accounted for about 18% of the total increase in radiative forcing due to long-lived greenhouse gases in the atmosphere. The average CH4 concentration (XCH4) was 1808 ppb in 2010. This represents an increase of 158% from approximately 700 ppb in the pre-industrial era. Satellite observations with continuous monitoring can be used to provide the extensive information on the temporal and spatial variations of atmospheric CH4 concentration. The Greenhouse Gases Observing Satellite (GOSAT) as the first satellite dedicated to the observation of greenhouse gases has provided extensive research opportunities for applications using space-based greenhouse gas measurement. The main objectives of this study are investigation of methane concentration trend changes and amplitude in XCH4 from 2009 to 2015 in Iran using GOSAT data and assessment of the relationship between XCH4 and Meteorological parameters obtained from weather stations and MODIS products for the year 2013 on the study area. Materials and Methods Study area The study area of this research is IRAN located in Middle East Asia between 25°-40° N and 44°- 64° E, covering approximately 1645000 km2. The location of the study area is shown in Figure1. Data The GOSAT was launched in January 2009 as a joint effort of the Ministry of Environment (MOE), National Institute for Environmental Studies (NIES) and Japan Aerospace Exploration Agency (JAXA). It is equipped with two sensors: The Thermal and Near-infrared Sensor for Carbon Observation Fourier Transform Spectrometer (TANSO-FTS) and the Cloud and Aerosol Imager (TANSO-CAI). MODIS (Moderate Resolution Imaging Spectroradiometer) as a key instrument aboard the Terra and Aqua is one of the most reliable data sources at the global scale. Terra MODIS and Aqua MODIS are viewing the entire Earth's surface every 1 to 2 days, acquiring data in 36 spectral bands, or groups of wavelengths (see MODIS Technical Specifications). The meteorological parameters (temperature, humidity and precipitation) used in this study were obtained from the Islamic Republic of Iran Meteorological Organization (http://www.irimo.ir/). In this research, we used GOSAT TANSO-FTS level 2 data, MOD13Q1 and MOD11C3 products of MODIS satellite, meteorological parameters (Temperature, Precipitation and Humidity) for 2013. Statistical analysis GOSAT data, MODIS products and meteorological parameter value were analyzed in SPSS statistical program. The correlation coefficient was calculated to investigate the relationships between CH4 concentration and used variable (temperature, precipitation, humidity, NDVI and LST). Analysis of Variance was applied for investigation of difference between XCH4 concentrations in different years. Results and Discussion In this research, the CH4 concentration values were calculated using TANSO-FTS sensor from 2009 to 2015 in whole the study area. The results show a steady increase in the mean atmospheric XCH4 from 1788.36 ppb in the year 2009 to 1823.45 ppb in the year 2015. This illustrates an increase of about 35.09 ppb for a 6-year period. To assess the monthly changes of CH4 concentration, we calculated the monthly average concentrations of this gas from 2009 to 2015. The results reveal that CH4 concentration was changed significantly between different months, with the highest concentration of XCH4 in October-September and its lowest concentration in March –April. According to the results, the coefficient of correlation between CH4 concentration and MODIS products showed that the correlation of this gas with NDVI and LST was negative and positive, respectively. As correlations coefficient for NDVI is -0.526, -0.138, -0.186 and -0.322 for spring, summer, autumn and winter, respectively. The correlation coefficient between XCH4 and LST is 0.6, 0.223, 0.458 and 0.634 for spring, summer, autumn and winter, respectively. Moreover, the coefficient of correlation between CH4 concentration and metrological parameters indicate that correlation of this gas with humidity and precipitation are negative (r humidity= -0.479, r precipitation= -0.505) and the correlation between this gas and temperature is positive (r=0.484). This means that CH4 concentration will increases with increases in temperature and LST, and decrease in precipitation, humidity and NDVI. Conclusion The satellite monitoring of CH4 concentrations showed increase in about 35.09 ppb over time from 2009 to 2015 in the study area. We observed that the XCH4 was changed significantly between different months, with the highest concentration of XCH4 in October-September and its lowest concentration in March–April. This amplitude is related to different sources and sink of methane in different seasons. The correlation between this gas and NDVI and precipitation humidity was negative, and correlation between this gas and LST, and temperature was positive. Therefore, it is necessary to conserve the natural ecosystems in whole IRAN especially in arid and semi-arid regions for decreasing CH4 concentrations. | ||
کلیدواژهها [English] | ||
climate change, CH4, GOSAT, MODIS, Satellite monitoring | ||
مراجع | ||
سازمان مدیریت و برنامهریزی کشور (1392). سالنامة آماری ایران، انتشارات سازمان مدیریت و برنامهریزی کشور. Cicerone, R.J. and Oremland, R.S. (1988). Biogeochemical aspects of atmospheric methane, Global biogeochemical cycles, 2(4): 299-327.
Crutzen, P.J. and Gidel, L.T. (1983). A two‐dimensional photochemical model of the atmosphere: 2. The tropospheric budgets of the anthropogenic chlorocarbons CO, CH4, CH3Cl and the effect of various NOx sources on tropospheric ozone, Journal of Geophysical Research, 88(C11): 6641-6661.
Dai, L.; Jia, J.; Yu, D.; Lewis, B.J.; Zhou, L.; Zhou, W.; Zhao, W. and Jiang, L. (2013). Effects of climate change on biomass carbon sequestration in old-growth forest ecosystems on Changbai Mountain in Northeast China, Forest Ecology and Management, 300: 106-116.
Eisele, F.L.; Mount, G.H.; Tanner, D.; Jefferson, A.; Shetter, R.; Harder, J.W. and Williams, E.J. (1997). Understanding the production and interconversion of the hydroxyl radical during the Tropospheric OH Photochemistry Experiment, Journal of Geophysical Research: Atmospheres, 102(D5): 6457-6465.
Food and Agriculture Organization (2015). http://www.fao.org/ag/agp/agpc/doc/counprof/iran/iran%20.htm. last visited at 23/04/2015.
Fu, L.; Zhao, Y.; Xu, Zh. and Wu, B. (2015). Spatial and temporal dynamics of forest aboveground carbon stocks in response to climate and environmental changes, Soils Sediments, 15(2): 249-259.
Galli, A.; Guerlet, S.; Butz, A.; Aben, I.; Suto, H.; Kuze, A. ... and Landgraf, J. (2014). The impact of spectral resolution on satellite retrieval accuracy of CO2 and CH4, Atmospheric Measurement Techniques Discussions, 6(6): 10399-10441.
Guo, M.; Wang, X.F.; Li, J.; Yi, K.P.; Zhong, G.S.; Wang, H.M. and Tani, H. (2013a). Spatial distribution of greenhouse gas concentrations in arid and semi-arid regions: A case study in East Asia,Journal of Arid Environments, 91: 119-128.
Guo, M.; Wang, X.; Li, J.; Wang, H. and Tani, H. (2013b). Examining the relationships between land cover and greenhouse gas concentrations using remote-sensing data in East Asia, International journal of remote sensing, 34(12): 4281-4303.
Inoue, M.; Morino, I.; Uchino, O.; Miyamoto, Y.; Yoshida, Y.; Yokota, T. ... and Patra, P.K. (2013). Validation of XCO2 derived from SWIR spectra of GOSAT TANSO-FTS with aircraft measurement data, Atmospheric Chemistry and Physics, 13(19): 9771-9788.
Kavitha, M. and Nair, P.R. (2016a). Region-dependent seasonal pattern of methane over Indian region as observed by SCIAMACHY, Atmospheric Environment, 131: 316-325.
Kavitha, M. and Nair, P.R. (2016b). Non-homogeneous vertical distribution of methane over Indian region using surface, aircraft and satellite based data, Atmospheric Environment, 141: 174-185.
Keppler, F.; Hamilton, J.T.; Braß, M. and Röckmann, T. (2006). Methane emissions from terrestrial plants under aerobic conditions, Nature, 439(7073): 187-191.
Kim, H.S.; Chung, Y.S.; Tans, P.P. and Dlugokencky, E.J. (2015). Decadal trends of atmospheric methane in East Asia from 1991 to 2013, Air Quality, Atmosphere & Health, 8(3): 293-298.
Kirschke, S.; Bousquet, P.; Ciais, P.; Saunois, M.; Canadell, J.G.; Dlugokencky, E.J. ... and Cameron-Smith, P. (2013). Three decades of global methane sources and sinks, Nature Geoscience, 6(10): 813-823.
Kuze, A.; Suto, H.; Nakajima, M. and Hamazaki, T. (2009). Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring, Applied Optics, 48(35): 6716-6733.
Miao, R.; Lu, N.; Yao, L.; Zhu, Y.; Wang, J. and Sun, J. (2013). Multi-year comparison of carbon dioxide from satellite data with ground-based FTS measurements (2003-2011), Remote Sensing, 5(7): 3431-3456.
Morino, I.; Uchino, O.; Inoue, M.; Yoshida, Y.; Yokota, T.; Wennberg, P. ... and Rettinger, M. (2010). Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra, Atmospheric Measurement Techniques, 4(2):1061-1076.
Mousavi, S.M.; Falahatkar, S. and Farajzadeh, M. (2017). Assessment of seasonal variations of carbon dioxide concentration in Iran using GOSAT data, Natural Resources Forum, 41(2):83-91.
Parker, R.; Boesch, H.; Cogan, A.; Fraser, A.; Feng, L.; Palmer, P.I. and Wennberg, P.O. (2011). Methane observations from the Greenhouse Gases Observing SATellite: Comparison to ground-based TCCON data and model calculations, Geophysical Research Letters, 38(15).
Prasad, P.; Rastogi, S. and Singh, R.P. (2014). Study of satellite retrieved CO2 and CH4 concentration over India, Advances in Space Research, 54(9): 1933-1940.
Sreenivas, G.; Mahesh, P.; Subin, J.; Kanchana, A.L.; Rao, P.V.N. and Dadhwal, V.K. (2016). Influence of Meteorology and interrelationship with greenhouse gases (CO2 and CH4) at a suburban site of India, Atmospheric Chemistry and Physics, 16(6): 3953-3967.
Sun, Z.; Wang, X.; Tani, H.; Zhong, G. and Yin, S. (2016). Spatial Distribution of CO2 Concentration over South America during ENSO Episodes by Using GOSAT Data, American Journal of Climate Change, 5(01): 77.
Vaghjiani, G.L. and Ravishankara, A.R. (1991). New measurement of the rate coefficient for the reaction of OH with methane, Nature, 350(6317): 406-409.
Wang, T.; Shi, J.; Jing, Y.; Zhao, T.; Ji, D. and Xiong, C. (2014). Combining XCO2 measurements derived from SCIAMACHY and GOSAT for potentially generating global CO2 maps with high spatiotemporal resolution, PLoS ONE, 9(8): 1-9.
World Meteorological Organization (2015). WMO WDCGG Data Summary No. 39; Japan Meteorological Agency/WMO: Tokyo, Japan, 2015; pp. 17-22.
World research institute (2015). http://www.wri.org. last visited at 15/8/2015.
Yokota, T.; Yoshida, Y.; Eguchi, N.; Ota, Y.; Tanaka, T.; Watanabe, H. and Maksyutov, S. (2009). Global concentrations of CO2 and CH4 retrieved from GOSAT: First preliminary results, Sola, 5: 160-163.
Yoshida, Y.; Ota, Y.; Eguchi, N.; Kikuchi, N.; Nobuta, K.; Tran, H. and Yokota, T. (2011). Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite, Atmospheric Measurement Techniques, 4(4): 717-734.
Zhang, Y.; Xu, M.; Chen, H. and Adams, J. (2009). Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate, Global Ecology and Biogeography, 18(3):280-290. | ||
آمار تعداد مشاهده مقاله: 1,180 تعداد دریافت فایل اصل مقاله: 1,077 |