تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,112,672 |
تعداد دریافت فایل اصل مقاله | 97,216,372 |
Modeling SMA actuated systems based on Bouc-Wen hysteresis model and feed-forward neural network | ||
Journal of Computational Applied Mechanics | ||
مقاله 2، دوره 49، شماره 1، شهریور 2018، صفحه 9-17 اصل مقاله (796.11 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jcamech.2017.234999.151 | ||
نویسندگان | ||
Ali Mohsenian؛ Mohamadreza Zakerzadeh* ؛ Masoud Shariat Panahi؛ Alireza fakhrzade | ||
School of Mechanical Engineering, College of Engineering, University of Tehran | ||
چکیده | ||
Despite the fact that shape-memory alloy (SMA) has several mechanical advantages as it continues being used as an actuator in engineering applications, using it still remains as a challenge since it shows both non-linear and hysteretic behavior. To improve the efficiency of SMA application, it is required to do research not only on modeling it, but also on control hysteresis behavior of these materials which are the fundamentals of several research opportunities in this area. Having considered these requirements, we have introduced a mathematical model to describe the hysteresis behavior of a mechanical system attached to SMA wire actuators using Bouc-Wen hysteresis model and feed-forward neural network. Due to inability of linear mass-spring-damper equations of classic Bouc-wen model to explain the hysteresis behavior of SMA actuators, in this paper we have applied changes in the mentioned equations of classic Bouc-Wen model to describe hysteresis loops of model. We also have used flexibility of the neural network systems to describe Bouc-Wen output in the main equation. Parameters of the developed model have been trained for a real mechanical system using simulation data after selecting proper configuration for the selected neural network. Finally, we have checked the accuracy of our model by applying two different series of validation data. The result shows the acceptable accuracy of the developed model. | ||
کلیدواژهها | ||
SHAPE-MEMORY ALLOY (SMA)؛ HYSTERESIS BEHAVIOR؛ BOUC-WEN MODEL؛ artificial neural network (ANN) | ||
مراجع | ||
[1] V. Hassani, T. Tjahjowidodo, T. N. Do, A survey on hysteresis modeling, identification and control, Mechanical Systems and Signal Processing, Vol. 49, No. 1-2, pp. 209-233, 2014. [2] M. Brokate, J. Sprekels, 2012, Hysteresis and Phase Transitions, Springer Science & Business Media, [3] J. G. Boyd, D. C. Lagoudas, A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy, International Journal of Plasticity, Vol. 12, No. 6, pp. 805-842, 1996. [4] M. Brocca, L. C. Brinson, Z. P. Bažant, Three-dimensional constitutive model for shape memory alloys based on microplane model, Journal of the Mechanics and Physics of Solids, Vol. 50, No. 5, pp. 1051-1077, 2002. [5] D. C. Lagoudas, 2008, Shape Memory Alloys: Modeling and Engineering Applications, Springer, [6] H. Prahlad, I. Chopra, Comparative Evaluation of Shape Memory Alloy Constitutive Models with Experimental Data, Journal of Intelligent Material Systems and Structures, Vol. 12, No. 6, pp. 383-395, 2016. [7] H. Sayyaadi, M. R. Zakerzadeh, H. Salehi, A comparative analysis of some one-dimensional shape memory alloy constitutive models based on experimental tests, Scientia Iranica, Vol. 19, No. 2, pp. 249-257, 2012. [8] S. Poorasadion, J. Arghavani, R. Naghdabadi, S. Sohrabpour, An improvement on the Brinson model for shape memory alloys with application to two-dimensional beam element, Journal of Intelligent Material Systems and Structures, Vol. 25, No. 15, pp. 1905-1920, 2013. [9] S. M. Dutta, F. H. Ghorbel, Differential Hysteresis Modeling of a Shape Memory Alloy Wire Actuator, IEEE/ASME Transactions on Mechatronics, Vol. 10, No. 2, pp. 189-197, 2005. [10] M. R. Zakerzadeh, H. Sayyaadi, M. A. V. Zanjani, Characterizing Hysteresis Nonlinearity Behavior of SMA Actuators by Krasnosel’skii-Pokrovskii Model, Journal Applied Mathematics, Vol. 1, No. 1, pp. 28-38, 2012. [11] M. R. Zakerzadeh, M. Firouzi, H. Sayyaadi, S. B. Shouraki, Hysteresis Nonlinearity Identification Using New Preisach Model-Based Artificial Neural Network Approach, Journal of Applied Mathematics, Vol. 2011, pp. 1-22, 2011. [12] H. Sayyaadi, M. R. Zakerzadeh, Position control of shape memory all [15] M. Fuad Mohammad Naser, F. Ikhouane, Characterization of the Hysteresis oy actuator based on the generalized Prandtl–Ishlinskii inverse model, Mechatronics, Vol. 22, No. 7, pp. 945-957, 2012. [13] S. Tafazoli, M. Leduc, X. Sun, Hysteresis Modeling using Fuzzy Subtractive Clustering COMPUTATIONAL COGNITION, Vol. 4, No. 3, pp. 15-27, 2006. [14] A. Rezaeeian, B. Shasti, A. Doosthoseini, A. Yousefi-Koma, ANFIS Modeling and Feed Forward Control of Shape Memory Alloy Actuators, in Proceeding of, World Scientific and Engineering Academy and Society (WSEAS) Stevens Point, Wisconsin, USA: 243-248, 2008.Duhem Model, IFAC Proceedings Volumes, Vol. 46, No. 12, pp. 29-34, 2013/01/01/, 2013. [16] B. Jayawardhana, R. Ouyang, V. Andrieu, Dissipativity of general Duhem hysteresis models, in IEEE Conference on Decision and Control and European Control Conference, 2011, pp. 3234-3239. [17] M. F. Mohammad Naser, F. Ikhouane, Consistency of the Duhem Model with Hysteresis, Mathematical Problems in Engineering, Vol. 2013, pp. 1-16, 2013. [18] A. Padthe, B. Drincic, O. Jinhyoung, D. Rizos, S. Fassois, D. Bernstein, Duhem modeling of friction-induced hysteresis, IEEE Control Systems Magazine, Vol. 28, No. 5, pp. 90-107, 2008. [19] W.-f. Xie, J. Fu, H. Yao, C.-Y. Su, Observer based control of piezoelectric actuators with classical Duhem modeled hysteresis, in Proceeding of, IEEE, pp. 4221-4226. [20] M. Zhou, J. Wang, Research on hysteresis of piezoceramic actuator based on the Duhem model, ScientificWorldJournal, Vol. 2013, pp. 814919, 2013. [21] B. Jayawardhana, R. Ouyang, V. Andrieu, Stability of systems with the Duhem hysteresis operator: The dissipativity approach, Automatica, Vol. 48, No. 10, pp. 2657-2662, 2012. [22] T. Aiki, T. Okazaki, One-dimensional Shape Memory Alloy Problem with Duhem Type of Hysteresis Operator, in: Free Boundary Problems, Eds., pp. 1-9: Springer Science mathplus Business Media, 2007. [23] U. D. Annakkage, P. G. McLaren, E. Dirks, R. P. Jayasinghe, A. D. Parker, A current transformer model based on the Jiles-Atherton theory of ferromagnetic hysteresis, IEEE Transactions on Power Delivery, Vol. 15, No. 1, pp. 57-61, 2000. [24] N. C. Pop, O. F. Călţun, Using the Jiles Atherton model to analyze the magnetic properties of magnetoelectric materials: (BaTiO3) x (CoFe2O4)1−x, Indian Journal of Physics, Vol. 86, No. 4, pp. 283-289, 2012. [25] P. R. Wilson, J. N. Ross, A. D. Brown, Optimizing the Jiles-Atherton model of hysteresis by a genetic algorithm, IEEE Transactions on Magnetics, Vol. 37, No. 2, pp. 989-993, 2001. [26] R. Marion, R. Scorretti, N. Siauve, M. A. Raulet, L. Krahenbiihl, Identification of Jiles–Atherton Model Parameters Using Particle Swarm Optimization, IEEE Transactions on Magnetics, Vol. 44, No. 6, pp. 894-897, 2008. [27] M. Toman, G. Stumberger, D. Dolinar, Parameter Identification of the Jiles–Atherton Hysteresis Model Using Differential Evolution, IEEE Transactions on Magnetics, Vol. 44, No. 6, pp. 1098-1101, 2008. [28] M. Ismail, F. Ikhouane, J. Rodellar, The Hysteresis Bouc-Wen Model, a Survey, Archives of Computational Methods in Engineering, Vol. 16, No. 2, pp. 161-188, 2009. [29] F. Ikhouane, J. Rodellar, 2007, Systems with Hysteresis: Analysis, Identification and Control Using the Bouc-Wen Model, Wiley-Interscience, [30] G. A. Ortiz, D. A. Alvarez, D. Bedoya-Ruíz, Identification of Bouc–Wen type models using multi-objective optimization algorithms, Computers & Structures, Vol. 114-115, pp. 121-132, 2013. [31] F. Ikhouane, V. Mañosa, J. Rodellar, Dynamic properties of the hysteretic Bouc-Wen model, Systems & Control Letters, Vol. 56, No. 3, pp. 197-205, 2007. [32] H.-g. Li, G. Meng, Nonlinear dynamics of a SDOF oscillator with Bouc–Wen hysteresis, Chaos, Solitons & Fractals, Vol. 34, No. 2, pp. 337-343, 2007. [33] J. Awrejcewicz, L. Dzyubak, C.-H. Lamarque, Modelling of hysteresis using Masing–Bouc-Wen’s framework and search of conditions for the chaotic responses, Communications in Nonlinear Science and Numerical Simulation, Vol. 13, No. 5, pp. 939-958, 2008. [34] Z.-l. Peng, C.-g. Zhou, Research on modeling of nonlinear vibration isolation system based on Bouc–Wen model, Defence Technology, Vol. 10, No. 4, pp. 371-374, 2014. [35] X. Zhu, X. Lu, Parametric Identification of Bouc-Wen Model and Its Application in Mild Steel Damper Modeling, Procedia Engineering, Vol. 14, pp. 318-324, 2011. [36] W. Zhu, D.-h. Wang, Non-symmetrical Bouc–Wen model for piezoelectric ceramic actuators, Sensors and Actuators A: Physical, Vol. 181, pp. 51-60, 2012. [37] Z. Wei, B. L. Xiang, R. X. Ting, Online parameter identification of the asymmetrical Bouc–Wen model for piezoelectric actuators, Precision Engineering, Vol. 38, No. 4, pp. 921-927, 2014. [38] P. Sengupta, B. Li, Modified Bouc–Wen model for hysteresis behavior of RC beam–column joints with limited transverse reinforcement, Engineering Structures, Vol. 46, pp. 392-406, 2013. [39] A. E. Charalampakis, V. K. Koumousis, Identification of Bouc–Wen hysteretic systems by a hybrid evolutionary algorithm, Journal of Sound and Vibration, Vol. 314, No. 3-5, pp. 571-585, 2008. [40] K. Ogata, in: Modern Control Engineering (5th Edition), Eds., pp. 164-179: Pearson, 2009. | ||
آمار تعداد مشاهده مقاله: 894 تعداد دریافت فایل اصل مقاله: 899 |