تعداد نشریات | 161 |
تعداد شمارهها | 6,473 |
تعداد مقالات | 69,969 |
تعداد مشاهده مقاله | 122,748,004 |
تعداد دریافت فایل اصل مقاله | 95,897,305 |
تخمین عمق به روش جدید اویلر RDAS و مقایسۀ آن با نتایج مدلسازی؛ مطالعۀ موردی: دادههای گرانی معدن هماتیت | ||
فیزیک زمین و فضا | ||
مقاله 1، دوره 44، شماره 1، اردیبهشت 1397، صفحه 1-20 اصل مقاله (1.01 M) | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2017.223069.1006872 | ||
نویسندگان | ||
مصطفی موسی پور یاسوری1؛ وحید ابراهیم زاده اردستانی* 2 | ||
1دانشجوی کارشناسی ارشد، گروه فیزیک زمین، موسسه ژئوفیزیک دانشگاه تهران، ایران | ||
2استاد، گروه فیزیک زمین، موسسه ژئوفیزیک دانشگاه تهران، ایران | ||
چکیده | ||
تخمین عمق ساختارهای زمینشناسی یکی از مهمترین اهداف مطالعات ژئوفیزیکی است. واهمامیخت اویلر (اویلر استاندارد) یکی از روشهای معروف و پرکاربرد در تخمین عمق است. بر پایۀ اویلر استاندارد روشهای متنوعی برای کاهش خطای تخمین عمق معرفی شده است. در این پژوهش از روش جدیدی به نام اویلر RDAS استفاده شده است. این روش با استفاده از اویلر استاندارد به دست میآید و بر پایۀ گرادیان اول قائم و مشتقات سیگنال تحلیلی استوار است. بررسی دادههای گرانی مصنوعی نشان میدهد که اویلر RDAS، در تخمین عمق این دادهها، خطای کمتری از اویلر استاندارد دارد. همچنین از این دو روش برای تخمین عمق دادههای گرانی ناشی از تودۀ هماتیت، واقع در استان کرمان، استفاده شده است. جوابهای اویلر RDAS در مقایسه با اویلر استاندارد انطباق بیشتری با مرز آنومالیها دارد و همچنین برای هر آنومالی، جوابها در بازۀ قائم کوچکتری قرار دارند که میتواند ملاکی برای دقیقتر بودن جوابهای اویلر RDAS باشد. برای بررسی بیشتر با استفاده از وارونسازی به روش کاماچو دادههای گرانی معدن هماتیت مدلسازی شده است. افزون بر این، نتایج مدلسازی با نتایج تخمین عمق اویلر مقایسه شده است. در این مقایسه 10 نقطه برروی آنومالیها مشخص شده و عمق دقیق آنومالیها برای این نقاط نشان داده شده است. خطای میانگین مجذور مربعات بین جوابهای اویلر و مدلسازی محاسبه شده است. این خطا، بین اویلر RDAS و مدلسازی، کمترین مقدار است که نشان میدهد جوابهای اویلر RDAS به جوابهای مدلسازی نزدیک است. بنابراین میتوان گفت جوابهای اویلر RDAS و مدلسازی از اویلر استاندارد دقیقتر است. | ||
کلیدواژهها | ||
اویلر استاندارد؛ تخمین عمق؛ دادههای گرانی؛ سیگنال تحلیلی؛ ضریب ساختاری؛ واهمامیخت اویلر | ||
عنوان مقاله [English] | ||
Depth estimation using the new method of Euler RDAS and comparison with modelling results, Case Study: gravity data of hematite mine | ||
نویسندگان [English] | ||
moustafa mousapour Yasoori1؛ Vahid Ebrahimzadeh Ardestani2 | ||
1M.Sc. Student, Department of Earth Physics, Institute of Geophysics, University of Tehran, Iran | ||
2Professor, Department of Earth Physics, Institute of Geophysics, University of Tehran, Iran | ||
چکیده [English] | ||
Depth estimation of geological structures is one of the most important objectives in geophysical studies. Euler deconvolution (standard Euler) is a well-known method in the depth estimation. Based on standard Euler, various methods are introduced to reduce error of the depth estimation. In this study we have used a new method called Euler RDAS. This method is based on the standard Euler. In this method derivatives of analytic signal and first vertical are used in Euler equation. Applying derivatives of analytic signal for depth estimation is better than the analytic signal. There is no problem of choosing structural index in this method which increases accuracy in the depth estimation. To examine the performance of this method, depths of several synthetic models are estimated and their results are compared to that of the standard Euler. In all models, results of the RDAS Euler shows fewer errors in high depth model in comparison to that of the standard Euler. This method was tested on synthetic data with noise. RDAS Euler sensitive to noise due to usage of high-degree derivatives is less than the standard Euler. Study shows that if the noise in the data is reduced by methods such as filter upward, it can provide an appropriate estimate of the depth. In this study, the depth of gravity anomalies caused by the masses of hematite located in Kerman, has estimated using standard Euler and RDAS Euler. Upward continued by 3 m has been used for reducing noise in this data. There are 3 possible hematite masses in residual map of the study area. The minimum of high depth anomalies indicates masses of hematite, which is calculated using RDAS Euler and was about 5 meters and a maximum of high depth is about 20 meters. The minimum depth obtained using standard Euler for this anomaly is about 5 meters and the maximum depth is about 40 meters. Responses of RDAS Euler is more compatible that of standard Euler with the boundary anomalies and has smaller vertical interval which can be a criterion for more precise solutions of the RDAS Euler. For further examination, the gravity data of hematite mine is used with inverse modeling of Camacho method. Minimum and maximum upper depths obtained for these anomalies are 5 to 35 meters, respectively. In addition, the modeling results is compared with the results of depth estimation of Euler. To this, 10 points in the anomalies area are pointed and the calculated depth of these points using standard Euler, RDAS Euler and modeling are shown. Root mean square error (RMS) between Euler’s and modeling results is calculated. In comparison of the results in different methods, which are not standard, results of two methods that have the lowest RMS error is considered as the selection criteria. RMS for standard Euler with MATLAB code, Geosoft, and RDAS Euler are equal to 11.43, 8.5, and 2.66 respectively. The results of two methods among these three methods which are used to estimate the depth of hematite masses are close hence they can be more reliable results. Therefore, due to fewer errors of RMS of RDAS Euler and modelling results are more accurate than that of the standard Euler. | ||
کلیدواژهها [English] | ||
Euler deconvolution, standard Euler, Analytic signal, depth estimation, structural index, Gravity data | ||
مراجع | ||
Barbosa, V. C., Silva, J. B. and Medeiros, W. E., 1999, Stability analysis and improvement of structural index estimation in Euler deconvolution. Geophysics, 64(1), pp.48-60. Beiki, M., 2010, Analytic signals of gravity gradient tensor and their application to estimate source location. Geophysics, 75(6), pp. I59-I74. Beiki, M., 2013, TSVD analysis of Euler deconvolution to improve estimating magnetic source parameters: An example from the Åsele area, Sweden. Journal of Applied Geophysics, 90, pp. 82-91. Cooper, G. R. J., 2014, Euler deconvolution in a radial coordinate system. Geophysical Prospecting, 62(5), pp. 1169-1179. Cooper, G. R., 2015, Using the analytic signal amplitude to determine the location and depth of thin dikes from magnetic data. Geophysics, 80(1), pp. J1-J6. Camacho, A. G., Montesinos, F. G. and Vieira, R., 2002, A 3-D gravity inversion tool based on exploration of model possibilities. Computers & Geosciences, 28(2), pp. 191-204. Guo, C. C., Xiong, S. Q., Xue, D. J., and Wang, L. F., 2014, Improved Euler method for the interpretation of potential data based on the ratio of the vertical first derivative to analytic signal. Applied Geophysics, 11(3), 331-339. Gerkens, A., 1989. Foundation of exploration geophysics. Hsu, S. K., 2002, Imaging magnetic sources using Euler's equation. Geophysical prospecting, 50(1), pp. 15-25. Huang, D., Gubbins, D., Clark, R. A. and Whaler, K. A., 1995, May. Combined study of Euler's homogeneity equation for gravity and magnetic field. In 57th EAGE Conference and Exhibition. Keating, P. B., 1998, Weighted Euler deconvolution of gravity data. Geophysics, 63(5), pp. 1595-1603. Keating, P. and Pilkington, M., 2004, Euler deconvolution of the analytic signal and its application to magnetic interpretation. Geophysical prospecting, 52(3), pp. 165-182. Klingele, E. E., Marson, I. and Kahle, H. G., 1991, Automatic Interpretation of Gravity Gradiometric Data in Two Dimensions: Vertical GRADIENT1. Geophysical Prospecting, 39(3), pp. 407-434. Marson, I. and Klingele, E. E., 1993, Advantages of using the vertical gradient of gravity for 3-D interpretation. Geophysics, 58(11), pp.1588-1595. Ma, G., 2014, The application of extended Euler deconvolution method in the interpretation of potential field data. Journal of Applied Geophysics, 107, 188-194. Nabighian, M. N., 1972, The analytic signal of twodimensional magnetic bodies with polygonal crosssection:Its properties and use for automated anomaly interpretation: Geophysics, 37(3), 507–517. Reid, A. B., Allsop, J. M. and Granser, H., 1990, Magnetic interpretation in three dimensions using Euler deconvolution: Geophysics, 55(1), 80–91. Roest, W. R., Verhoef, J. and Pilkington, M., 1992, Magnetic interpretation using the 3-D analytic signal: Geophysics, 57,116–125. Salem, A., Elawadi, E., and Ushijima, K., 2003, Depth determination from residual gravity anomaly data using a simple formula. Computers & geosciences, 29(6), 801-804. Salem, A., Williams, S., Fairhead, J. D., Ravat, D., and Smith, R., 2007a, Tilt-depth method: A simple depth estimation method using first-order magnetic derivatives. The Leading Edge, 26(12), 1502-1505. Salem, A., Smith, R., Williams, S., Ravat, D. and Fairhead, D., 2007b, Generalized magnetic tilt-Euler deconvolution. In 2007 SEG Annual Meeting. Society of Exploration Geophysicists. Salem, A., Williams, S., Fairhead, D., Smith, R., and Ravat, D., 2008, Interpretation of magnetic data using tilt-angle derivatives. Geophysics, 73(1), L1-L10. Thompson, D. T., 1982, EULDPH—a new technique for making computer assisted depth estimates from magnetic data: Geophysics, 47(1), 31–37. Zhang, F. X., Zhang, X. Z., Zhang, F. Q., Sun, J. P., Qiu, D. M. and Xue, J., 2010, Study on geology and geophysics on structural units of Hulin Basin in Heilongjiang province: Journal of Jilin University (Earth Science Edition), 40(5), 1170–1176. | ||
آمار تعداد مشاهده مقاله: 1,586 تعداد دریافت فایل اصل مقاله: 849 |