تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,124,583 |
تعداد دریافت فایل اصل مقاله | 97,233,202 |
وارونسازی توأمان دو بعدی زمان سیرهای موج لرزهای S و مقاومت ویژه الکتریکی برای آشکارسازی ناهمگنیهای نزدیک سطح | ||
فیزیک زمین و فضا | ||
مقاله 4، دوره 44، شماره 1، اردیبهشت 1397، صفحه 53-69 اصل مقاله (1.18 M) | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2018.238920.1006922 | ||
نویسندگان | ||
مصطفی یاری1؛ مجید نبیبیدهندی* 2؛ ظاهر حسین شمالی3؛ لقمان نمکی4 | ||
1دانشجوی دکتری، گروه فیزیک زمین، موسسه ژئوفیزیک دانشگاه تهران، ایران | ||
2استاد، گروه فیزیک زمین، موسسه ژئوفیزیک دانشگاه تهران، ایران | ||
3دانشیار، گروه فیزیک زمین، موسسه ژئوفیزیک دانشگاه تهران، ایران | ||
4استادیار، دانشگاه آزاد اسلامی واحد سنندج، کردستان، ایران | ||
چکیده | ||
در این مقاله برای تصویرسازی همزمان مجموعه دادههای لرزه شکست مرزی و مقاومت ویژه الکتریکی روش وارونسازی توأمان دو بعدی تکرار شونده انتخاب شده است. در این الگوریتم، تابع گرادیانهای متقاطع بهعنوان عامل پیونده دهنده ساختاری به مسئله وارون اضافه شده است. نتایج حاصل از وارونسازی توأمان دادههای زمان سیر موج S (برشی) و مقاومت ویژه که در امتداد یک پروفیل برداشت شدهاند، تشخیص دقیق مرز لایههای تشکیل شده از مواد نرم و سخت را برای ما آسانتر میکند و علاوه بر آن ارتباط ضعیف ساختاری که بین مدلهای سرعت موج برشی و مقاومت ویژه وجود دارد را تقویت خواهد کرد. در مدلهای بازسازی شده از الگوریتم توأمان میتوان بسیاری از ناهمگنیهای نزدیک سطح (از جمله زونهای پر سرعت و کمسرعت) را که در مدل سرعتی حاصل از وارونسازی منفرد پدیدار نمیشوند آشکار کرد. این تکنیک جدید بهطور موفقیتآمیزی بر روی دادههای مصنوعی (بهعنوان آزمون اعتبارسنجی) و همچنین بر روی دادههای صحرایی که در سواحل جنوبی ایران اندازهگیری شده، اعمال شده است. با مقایسه نتایج حاصل از هر دو الگوریتم، مشاهده شد که مدلهای بهدستآمده از روش وارونسازی توأمان نسبت به مدلهای حاصل از روش وارونسازی منفرد دارای تشابه ساختاری بهتری هستند؛ بنابراین، این انطباق ساختاری قابل ملاحظه، شناسایی ناهمگنیهای کمسرعت و یا پرسرعت را راحتتر میکند. | ||
کلیدواژهها | ||
وارونسازی توأمان؛ ناهمگنی نزدیک سطح؛ لرزه شکست مرزی؛ مقاومت ویژه؛ تابع گرادیانهای متقاطع | ||
عنوان مقاله [English] | ||
Joint two-dimensional electrical resistivity and seismic S-wave travel times inversion to characterize near-surface heterogeneities | ||
نویسندگان [English] | ||
Mostafa Yari1؛ Majid Nabi-Bidhendi2؛ Zaher Hossein Shomali3؛ Loqhman Namaki4 | ||
1Ph.D. Student, Department of Earth Physics, Institute of Geophysics, University of Tehran, Iran | ||
2Professor, Department of Earth Physics, Institute of Geophysics, University of Tehran, Iran | ||
3Associate Professor, Department of Earth Physics, Institute of Geophysics, University of Tehran, Iran | ||
4Assistant Professor, Islamic Azad University Sanandaj Branch, Kordestan, Iran | ||
چکیده [English] | ||
Establishing the precise relationship between electrical resistivity and seismic shear (S) wave velocity in heterogeneous near-surface materials is a fundamental problem in geophysics and can complement petrophysical measurements for improved subsurface characterization. The relevant data from two-dimensional (2-D) electrical resistivity and seismic refraction investigations of the near-surface have jointly been inverted leading to accurate models. Nevertheless, Joint 2-D resistivity-velocity inversion is a difficult task since there is no established analytical relationship between resistivity and velocity. There are different approaches to 2-D joint inversion of disparate data with varying degrees of success. These can be classified into (1) petrophysical approach and (2) structural (or geometrical) approach. The petrophysical approach are based on the fact that for some specific geological environments, multiple geophysical parameters can be correlated via physical or empirical relationships. In the structural approach, both methods of geophysical are sensing the same underlying geology which in turn structurally controls the distribution of petrophysical properties. In this paper, we select the structural approach and posit that petrophysical information may be derived from the resultant models. When there is no special analytical relationship between the physical properties that have been extracted by different geophysical methods, we can estimate the models that there are good structural agreement between the physical properties, by means of joint inversion techniques. Gallardo and Meju (2003) by introducing cross-gradientsfunction that is defined in the form the cross product of the gradients, estimated the structural resemblances between the resulting images from joint inversion. The cross-gradients function is incorporated as a constraint in a nonlinear least squares problem formulation, which is solved using the Lagrange multiplier method. When the value of this function is zero, images of models will completely be similar in structure. Being zero of this function requires that the simultaneous spatial changes of different geophysical models, independent of the amplitude, should be collinear. In term of geology this means that if the changes of the physical properties for both methods are collinear then can characterize boundaries of layers and structures using the images obtained from structure‐coupled inversion. For the DC resistivity, forward problem is used by the procedure given by Perez-Flores et al. (2001). In this approach, the resistivity forward calculation is stated as a linear problem, which is based on the nonlinear integral equations for electromagnetic inverse problems of Gomez-Trevino (1987). The resistivity response of the model using the forward codes of Perez-Flores is approximated because of its computational speed of this approach we have employed it in the two dimensional joint inversion procedure. For estimating the first-arrival times from source to receiver, we adopt the approach of pseudo-bending technique (Um and Thurber, 1987). Compared to the earlier bending methods (Julian and Gubbins, 1977), the pseudo-bending technique is much rigorous and faster. For a cell with constant velocity, the Jacobian matrix is simply the length of the linear segment of the ray in the cell in transit, which is calculated impressively by ray tracing through the field of travel times that are generated during the forward modeling process. Incorporating auxiliary factors such as, Levenberg-Marquardt (LM) stabilization factor and smoothness constraints in the inverse problem assures convergence and stability of solutions much more and can resolve the nonuniqueness that has been taken place because of data error. Joint two-dimensional (2-D) inversion scheme is used to a test data sample (to validate inversion technique) and also to a field data set that has been recorded along a profile. The obtained results from this method is compared with the conventional separate inversion results and we conclude from this comparison that the joint inversion scheme is more powerful than the traditional separate inversion in illustrating the structural similarities between seismic velocity and resistivity models. As a result, this gained structural conformity of the cross-gradients inversion models can help us in better characterization of heterogeneous near-surface materials. | ||
کلیدواژهها [English] | ||
Joint inversion, near-surface heterogeneity, seismic refraction, resistivity, cross-gradients | ||
مراجع | ||
Aster, R., Borchers, B. and Thurber, C., 2013, Parameter Estimation and Inverse Problems (Academic Press Inc.). Berge, P. A., Berryman, J. G., Bertete-Aguirre, H., Bonner, P., Roberts, J. J. and Wildenschild, D., 2000, Joint inversion of geophysical data for site characterization and restoration monitoring. LLNL Rep. UCRL-ID-128343, Proj. 55411, Lawrence Livermore Natl. Lab., Livermore, Calif. Bennington, N. L., Zhang, H., Thurber, C. H. and Bedrosian, P. A., 2015, Joint inversion of seismic and magnetotelluric data in the Parkfield region of California using the normalized cross-gradient constraint. Pure and Applied Geophysics, 172(5), 1033-1052. Doetsch, J., Linde, N. and Binley, A., 2011, Structural joint inversion of timelapse crosshole ERT and GPR traveltime data. Geophysical Research Letters, 37(6), L24404. Doetsch, J., Linde, N., Coscia, I., Greenhalgh, S. A. and Green, A. G., 2010, Zonation for 3D aquifer characterization based on joint inversions of multimethod crosshole geophysical data. Geophysics, 75(6), G53–G64, Fregoso, E. and Gallardo, L. A., 2009, Cross gradients joint 3D inversion with applications to gravity and magnetic data. Geophysics, 74(4), L31–L42. Gallardo, L. A. and Meju, M. A., 2003, Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data. Geophysical Research Letters, 30, 1658. Gallardo, L. A. and Meju, M. A., 2004, Joint two-dimensional DC resistivity and seismic travel time inversion with cross gradients constraints. Journal of Geophysical Research Solid Earth, 109, B03311. Gallardo-Delgado, L. A., Perez-Flores, M. A. and Gomez-Trevino, E., 2003, A versatile algorithm for joint 3-D inversion of gravity and magnetic data, Geophysics, 68, 949–959. Gallardo, L. A., Meju, M. A. and Perez-Flores, M. A., 2005, A quadratic programming approach for joint image reconstruction: mathematical and geophysical examples. Inverse Problems, 21, 435–452. Garofalo, F., Sauvin, G., Socco, L. V. and Lecomte, I., 2015, Joint inversion of seismic and electric data applied to 2D media. Geophysics, 80(4), EN93-EN104. Gomez-Trevino, E., 1987, Nonlinear integral equations for electromagnetic inverse problems. Geophysics, 52, 1297–1302. Haber, E. and Oldenburg, D. W., 1997, Joint inversion: a structural approach. Inverse Problems, 13, 63–77. Hu, W. Y., Abubakar, A. and Habashy, T. M., 2009, Joint electromagnetic and seismic inversion using structural constraints. Geophysics, 74, R99–R109. Kozlovskaya, E., 2001, Theory and application of joint interpretation of multimethod geophysical data, Ph.D. dissertation, Univ. of Oulu, Oulu, Finland. Julian, B. R. and Gubbins, D., 1977, Three-dimensional seismic ray tracing, J. Geophys., 43, 95–113. Linde, N., Tryggvason, A. Peterson, J. E. and Hubbard, S. S., 2008, Joint inversion of crosshole radar and seismic traveltimes acquired at the South Oyster Bacterial Transport Site. Geophysics, 73, G29–G37. Lines, L. R., Schultz, A. K. and Treitel, S., 1988, Cooperative inversion of geophysical data. Geophysics, 53, 8–20. Meju, M. A., Gallardo, L. A. and Mohamed, A. K. 2003, Evidence for correlation of electrical resistivity and seismic velocity in heterogeneous near-surface materials. Geophys. Res. Lett., 30(7), 1373. Molodtsov, D. M., Troyan, V. N., Roslov, Y. V. and Zerilli, A., 2013, Joint inversion of seismic traveltimes and magnetotelluric data with a directed structural constraint. Geophysical Prospecting, 61(6), 1218-1228. Musil, M., Maurer, H. R. and Green, A. G., 2003, Discrete tomography and joint inversion for loosely connected or unconnected physical properties: Application to crosshole seismic and georadar data sets. Geophys. J. Int., 153, 389– 402. Newman, G. A. and M. Commer, 2010, Joint electromagnetic-seismic inverse modeling for matched data resolution. Presented at the EGM International Workshop. Perez-Flores, M. A., Mendez-Delgado, S. and Gomez-Trevino, E., 2001, Imaging low-frequency and DC electromagnetic fields using a simple linear approximation. Geophysics, 66, 1067–1081. Scott, J. B. T., Barker, R. D. and Peacock, S., 2000, Combined seismic refraction and electrical imaging. paper presented at 6th Meeting of Environmental and Engineering Geophysics, Environ. and Eng. Geophys. Soc., Bochum, Germany. Tikhonov, A. N. and Arsenin, V. Y., 1977, Solutions of Ill-Posed Problems (John Wiley and Sons, New York. Tillmann, A. and T. Stocker, 2000, A new approach for the joint inversion of seismic and geoelectric data. paper presented at 63rd EAGE Conference and Technical Exhibition, Eur. Assoc. of Geosci. And Eng., Amsterdam. Um, J. and Thurber, C., 1987, A fast algorithm for two-point seismic ray tracing. Bull. Seism. Soc. Am., 77, 972–986. Van Wijk, K., Scales, J. A., Navidi, W. and Roy-Chowdhury, K., 1998, Estimating data uncertainties for least squares optimization. in Annual Project Review, vol. CWP 283, Center for Wave Phenomena, Colorado School of Mines. Wang, K. P., Tan, H. D. and Wang, T., 2017, 2D joint inversion of CSAMT and magnetic data based on cross-gradient theory. Applied Geophysics, 14(2), 279-290. Zelt, C. A. and Barton, P. J., 1998, Three-dimensional seismic refraction tomography: A comparison of two methods applied to data from the Faeroe Basin. J. Geophys. Res., 103, 7187–7210. Zhang, J. and Revil, A., 2015, 2D joint inversion of geophysical data using petrophysical clustering and facies deformation. Geophysics, 80(5), M69-M88. Zhou, J., Meng, X., Guo, L. and Zhang, S., 2015, Three-dimensional cross-gradient joint inversion of gravity and normalized magnetic source strength data in the presence of remanent magnetization. Journal of Applied Geophysics, 119, 51-60. | ||
آمار تعداد مشاهده مقاله: 1,523 تعداد دریافت فایل اصل مقاله: 790 |