
تعداد نشریات | 162 |
تعداد شمارهها | 6,623 |
تعداد مقالات | 71,544 |
تعداد مشاهده مقاله | 126,887,655 |
تعداد دریافت فایل اصل مقاله | 99,932,039 |
Bayesian Inference for Spatial Beta Generalized Linear Mixed Models | ||
Journal of Sciences, Islamic Republic of Iran | ||
مقاله 7، دوره 29، شماره 2، تیر 2018، صفحه 173-185 اصل مقاله (860.4 K) | ||
نوع مقاله: Final File | ||
شناسه دیجیتال (DOI): 10.22059/jsciences.2018.65022 | ||
نویسندگان | ||
L. Kalhori Nadrabadi؛ M. Mohhamadzadeh* | ||
1 Department of Statistics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran | ||
چکیده | ||
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symmetric and skewed families. In this paper, a beta generalized linear mixed model with spatial random effect is proposed emphasizing on small values of the spatial range parameter and small sample sizes. Then some models with both fixed and varying precision parameter and different combinations of priors and sample sizes are discussed. Next, the Bayesian estimation of the model parameters is evaluated in an intensive simulation study. Selected priors improved the Bayesian estimation of the parameters, especially for small sample sizes and small values of range parameter. Finally, an application of the proposed model on data provided by Household Income and Expenditure Survey (HIES) of Tehran city is presented. | ||
کلیدواژهها | ||
Bayesian estimation؛ Beta regression model؛ Household income and expenditure data؛ Spatial random effect | ||
مراجع | ||
10. Ferreira G., Figueroa-Zúñiga J.I., de Castro M. Partially Linear Beta regression Model with Autoregressive Errors. TEST. 24: 752-775 (2015).
11. Cepeda-Cuervo E., Urdinola B.P., Rodriguez D. Double Generalized Spatial Econometric Models. Commun. Stat. Simul. Comput. 41: 671-685 (2012).
12. Cepeda-Cuervo, E., Nunez-Anton V. Spatial Double Generalized Beta Regression Models Extensions and Application to Study Quality of Education in Colombia. J. Educ. Behav. Stat. 38:604-628 (2013).
13. Gholizadeh K., Mohammadzadeh M., Ghayyomi Z. Spatial Analysis of Structured Additive Regression and Modelling of Crime Data in Tehran City Using Integrated Nested Laplace Approximation. Journal of Statistical Society.7: 103-124 (2013).
14. Fustos R. Modelo Lineal Generalizado Espacial Con Variable Respuesta Beta. Engineer's Degree Dissertation. Department of Statistics. University of Concepcion, Chile. (2013).
15. Lagos-Alvarez B.M., Fustos-Toribio R., Figueroa-Zúñiga J., and Mateu, J. Geostatistical Mixed Beta Regression: A Bayesian Approach. SERRA. 31: 571-584 (2016).
16. Kalhori L., Mohammadzadeh M. Spatial Beta Regression Model with Random Effect. J. SRI. 13: 214-230 (2016).
17. Brooks S.P., Gelman A. General Methods for Monitoring Convergence of Iterative Simulations. J. Comput. Graph. Stat. 7: 434-455 (1998).
18. Heidelberger P., Welch P.D. A Spectral Method for Confidence Interval Generation and Run Length Control in Simulations. Commun. ACM. 24: 233-245 (1981).
19.
Diggle P.J., Tawn J., Moyeed R. Model-Based Geostatistics. J. Royal. Stat. Soc: Ser. C Appl. Stat. 47: 299-350 (1998).
20. Mark S. Handcock M.L.S. A Bayesian Analysis of Kriging. Technometrics. 35: 403-410 (1993).
21. Stein M.L. Interpolation of Spatial Data: Some Theory for Kriging, Springer Science & Business Media, New York. (2012).
22. Stein M.L. Interpolation of Spatial Data: Some Theory for Kriging, Springer Science & Business Media, New York. (2012).
23. Chen M.H., Shao Q.M., Ibrahim J. Monte Carlo Methods in Bayesian Computation, Springer, New York. (2000).
24. Sturtz S., Ligges U., Gelman A. R2winbugs: A Package for Running Winbugs from R. J. Stat. Softw. 12: 1-16 (2005).
25. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Austria, Vienna. (2013).
26. Geweke J. Evaluating the Accuracy of Sampling Based Approaches to the Calculation of Posterior Moments. Federal Reserve Bank of Minneapolis, Research Department Minneapolis, MN, USA. 196: (1991).
27. Huang X., Li G., Elashoff R.M. A Joint Model of Longitudinal and Competing Risks Survival Data with Heterogeneous Random Effects and Outlying Longitudinal Measurements. Stat. Its Interface. 3: 185 (2010). | ||
آمار تعداد مشاهده مقاله: 512 تعداد دریافت فایل اصل مقاله: 872 |