تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,116,741 |
تعداد دریافت فایل اصل مقاله | 97,221,515 |
Size-dependent on vibration and flexural sensitivity of atomic force microscope | ||
Journal of Computational Applied Mechanics | ||
مقاله 27، دوره 50، شماره 1، شهریور 2019، صفحه 191-196 اصل مقاله (645.37 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jcamech.2018.250335.233 | ||
نویسندگان | ||
Reza Javidi1؛ Hamid Haghshenas Gorgani2؛ Mohsen Mahdavi Adeli* 3 | ||
1School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran | ||
2Engineering Graphics Center, Sharif University of Technology, Tehran, Iran | ||
3Department of Mechanical Engineering, Sousangerd Branch, Islamic Azad University, Sousangerd, Iran | ||
چکیده | ||
In this paper, the free vibration behaviors and flexural sensitivity of atomic force microscope cantilevers with small-scale effects are investigated. To study the small-scale effects on natural frequencies and flexural sensitivity, the consistent couple stress theory is applied. In this theory, the couple stress is assumed skew-symmetric. Unlike the classical beam theory, the new model contains a material-length-scale parameter and can capture the size effect. For this purpose, the Euler–Bernoulli beam theory is used to develop the AFM cantilever. The tip interacts with the sample that is modeled by a spring with constant of. The equation of motion is obtained through a variational formulation based on Hamilton’s principle. In addition, the analytical expressions for the natural frequency and sensitivity are also derived. At the end, some numerical results are selected to study the effects of material-length-scale parameter and dimensionless thickness on the natural frequency and flexural sensitivity. | ||
کلیدواژهها | ||
consistent couple stress theory؛ atomic force microscope (AFM)؛ Euler–Bernoulli beam؛ Hamilton’s principle؛ Sensitivity | ||
مراجع | ||
[1] A. Hadi, A. Rastgoo, A. Bolhassani, N. Haghighipour, Effects of stretching on molecular transfer from cell membrane by forming pores, Soft Materials, pp. 1-9, 2019. [2] H. H. Gorgani, M. M. Adeli, M. Hosseini, Pull-in behavior of functionally graded micro/nano-beams for MEMS and NEMS switches, Microsystem Technologies, pp. 1-9, 2018. [3] M. Farajpour, A. Shahidi, A. Hadi, A. Farajpour, Influence of initial edge displacement on the nonlinear vibration, electrical and magnetic instabilities of magneto-electro-elastic nanofilms, Mechanics of Advanced Materials and Structures, pp. 1-13, 2018. [4] M. Shishesaz, M. Hosseini, K. N. Tahan, A. Hadi, Analysis of functionally graded nanodisks under thermoelastic loading based on the strain gradient theory, Acta Mechanica, Vol. 228, No. 12, pp. 4141-4168, 2017. [5] A. Hadi, M. Z. Nejad, A. Rastgoo, M. Hosseini, Buckling analysis of FGM Euler-Bernoulli nano-beams with 3D-varying properties based on consistent couple-stress theory, Steel and Composite Structures, Vol. 26, No. 6, pp. 663-672, 2018. [6] A. Hadi, A. Rastgoo, N. Haghighipour, A. Bolhassani, Numerical modelling of a spheroid living cell membrane under hydrostatic pressure, Journal of Statistical Mechanics: Theory and Experiment, Vol. 2018, No. 8, pp. 083501, 2018. [7] M. Hosseini, M. Shishesaz, A. Hadi, Thermoelastic analysis of rotating functionally graded micro/nanodisks of variable thickness, Thin-Walled Structures, Vol. 134, pp. 508-523, 2019. [8] S. Gopalakrishnan, S. Narendar, 2013, Wave Propagation in Nanostructures: Nonlocal Continuum Mechanics Formulations, Springer Science & Business Media, [9] M. Hosseini, M. Shishesaz, K. N. Tahan, A. Hadi, Stress analysis of rotating nano-disks of variable thickness made of functionally graded materials, International Journal of Engineering Science, Vol. 109, pp. 29-53, 2016. [10] A. Hadi, M. Z. Nejad, M. Hosseini, Vibrations of three-dimensionally graded nanobeams, International Journal of Engineering Science, Vol. 128, pp. 12-23, 2018. [11] M. Z. Nejad, A. Hadi, A. Farajpour, Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials, Structural Engineering and Mechanics, Vol. 63, No. 2, pp. 161-169, 2017. [12] M. Hosseini, H. H. Gorgani, M. Shishesaz, A. Hadi, Size-dependent stress analysis of single-wall carbon nanotube based on strain gradient theory, International Journal of Applied Mechanics, Vol. 9, No. 06, pp. 1750087, 2017. [13] M. M. Adeli, A. Hadi, M. Hosseini, H. H. Gorgani, Torsional vibration of nano-cone based on nonlocal strain gradient elasticity theory, The European Physical Journal Plus, Vol. 132, No. 9, pp. 393, 2017. [14] A. Soleimani, K. Dastani, A. Hadi, M. H. Naei, Effect of out-of-plane defects on the postbuckling behavior of graphene sheets based on nonlocal elasticity theory, Steel and Composite Structures, Vol. 30, No. 6, pp. 517-+, 2019. [15] M. Z. Nejad, A. Hadi, A. Omidvari, A. Rastgoo, Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory, Structural Engineering and Mechanics, Vol. 67, No. 4, pp. 417-425, 2018. [16] M. Mohammadi, M. Hosseini, M. Shishesaz, A. Hadi, A. Rastgoo, Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads, European Journal of Mechanics-A/Solids, 2019. [17] A. C. Eringen, Theory of micromorphic materials with memory, International Journal of Engineering Science, Vol. 10, No. 7, pp. 623-641, 1972. [18] A. C. Eringen, Nonlocal polar elastic continua, International journal of engineering science, Vol. 10, No. 1, pp. 1-16, 1972. [19] A. C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, Journal of applied physics, Vol. 54, No. 9, pp. 4703-4710, 1983. [20] A. C. Eringen, 2002, Nonlocal continuum field theories, Springer Science & Business Media, [21] A. Daneshmehr, A. Rajabpoor, A. Hadi, Size dependent free vibration analysis of nanoplates made of functionally graded materials based on nonlocal elasticity theory with high order theories, International Journal of Engineering Science, Vol. 95, pp. 23-35, 2015. [22] M. Z. Nejad, A. Hadi, A. Rastgoo, Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on nonlocal elasticity theory, International Journal of Engineering Science, Vol. 103, pp. 1-10, 2016. [23] M. Z. Nejad, A. Hadi, Non-local analysis of free vibration of bi-directional functionally graded Euler–Bernoulli nano-beams, International Journal of Engineering Science, Vol. 105, pp. 1-11, 2016. [24] M. Z. Nejad, A. Hadi, Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler–Bernoulli nano-beams, International Journal of Engineering Science, Vol. 106, pp. 1-9, 2016. [25] D. Lam, F. Yang, A. Chong, J. Wang, P. Tong, Experiments and theory in strain gradient elasticity, Journal of the Mechanics and Physics of Solids, Vol. 51, No. 8, pp. 1477-1508, 2003. [26] R. A. Toupin, Elastic materials with couple-stresses, Archive for Rational Mechanics and Analysis, Vol. 11, No. 1, pp. 385-414, 1962. [27] R. Mindlin, H. Tiersten, Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and Analysis, Vol. 11, No. 1, pp. 415-448, 1962. [28] W. KOlTER, Couple stresses in the theory of elasticity, Proc. Koninklijke Nederl. Akaad. van Wetensch, Vol. 67, 1964. [29] A. Farajpour, A. Rastgoo, M. Farajpour, Nonlinear buckling analysis of magneto-electro-elastic CNT-MT hybrid nanoshells based on the nonlocal continuum mechanics, Composite Structures, Vol. 180, pp. 179-191, 2017. [30] M. Baghani, M. Mohammadi, A. Farajpour, Dynamic and stability analysis of the rotating nanobeam in a nonuniform magnetic field considering the surface energy, International Journal of Applied Mechanics, Vol. 8, No. 04, pp. 1650048, 2016. [31] N. Kordani, A. Fereidoon, M. Divsalar, A. Farajpour, Forced vibration of piezoelectric nanowires based on nonlocal elasticity theory, Journal of Computational Applied Mechanics, Vol. 47, No. 2, pp. 137-150, 2016. [32] A. Farajpour, A. Rastgoo, Influence of carbon nanotubes on the buckling of microtubule bundles in viscoelastic cytoplasm using nonlocal strain gradient theory, Results in physics, Vol. 7, pp. 1367-1375, 2017. [33] F. Yang, A. Chong, D. C. C. Lam, P. Tong, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, Vol. 39, No. 10, pp. 2731-2743, 2002. [34] H. Ma, X.-L. Gao, J. Reddy, A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, Journal of the Mechanics and Physics of Solids, Vol. 56, No. 12, pp. 3379-3391, 2008. [35] S. Park, X. Gao, Bernoulli–Euler beam model based on a modified couple stress theory, Journal of Micromechanics and Microengineering, Vol. 16, No. 11, pp. 2355, 2006. [36] M. Asghari, M. Kahrobaiyan, M. Ahmadian, A nonlinear Timoshenko beam formulation based on the modified couple stress theory, International Journal of Engineering Science, Vol. 48, No. 12, pp. 1749-1761, 2010. [37] W. Xia, L. Wang, L. Yin, Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration, International Journal of Engineering Science, Vol. 48, No. 12, pp. 2044-2053, 2010. [38] M. Şimşek, Nonlinear static and free vibration analysis of microbeams based on the nonlinear elastic foundation using modified couple stress theory and He’s variational method, Composite Structures, Vol. 112, pp. 264-272, 6//, 2014. [39] M. Asghari, M. Rahaeifard, M. Kahrobaiyan, M. Ahmadian, The modified couple stress functionally graded Timoshenko beam formulation, Materials & Design, Vol. 32, No. 3, pp. 1435-1443, 2011. [40] L.-L. Ke, Y.-S. Wang, J. Yang, S. Kitipornchai, Nonlinear free vibration of size-dependent functionally graded microbeams, International Journal of Engineering Science, Vol. 50, No. 1, pp. 256-267, 2012. [41] N. Shafiei, S. S. Mirjavadi, B. M. Afshari, S. Rabby, A. Hamouda, Nonlinear thermal buckling of axially functionally graded micro and nanobeams, Composite Structures, Vol. 168, pp. 428-439, 2017. [42] S. Srividhya, P. Raghu, A. Rajagopal, J. Reddy, Nonlocal nonlinear analysis of functionally graded plates using third-order shear deformation theory, International Journal of Engineering Science, Vol. 125, pp. 1-22, 2018. [43] E. Jomehzadeh, H. Noori, A. Saidi, The size-dependent vibration analysis of micro-plates based on a modified couple stress theory, Physica E: Low-dimensional Systems and Nanostructures, Vol. 43, No. 4, pp. 877-883, 2011. [44] L. Yin, Q. Qian, L. Wang, W. Xia, Vibration analysis of microscale plates based on modified couple stress theory, Acta Mechanica Solida Sinica, Vol. 23, No. 5, pp. 386-393, 2010. [45] L. He, J. Lou, E. Zhang, Y. Wang, Y. Bai, A size-dependent four variable refined plate model for functionally graded microplates based on modified couple stress theory, Composite Structures, Vol. 130, pp. 107-115, 10/15/, 2015. [46] M. Asghari, Geometrically nonlinear micro-plate formulation based on the modified couple stress theory, International Journal of Engineering Science, Vol. 51, pp. 292-309, 2012. [47] J. Lou, L. He, Closed-form solutions for nonlinear bending and free vibration of functionally graded microplates based on the modified couple stress theory, Composite Structures, Vol. 131, pp. 810-820, 11/1/, 2015. [48] M. Mohammad-Abadi, A. Daneshmehr, Modified couple stress theory applied to dynamic analysis of composite laminated beams by considering different beam theories, International Journal of Engineering Science, Vol. 87, pp. 83-102, 2015. [49] D. Shao, S. Hu, Q. Wang, F. Pang, Free vibration of refined higher-order shear deformation composite laminated beams with general boundary conditions, Composites Part B: Engineering, Vol. 108, pp. 75-90, 2017. [50] A. R. Hadjesfandiari, G. F. Dargush, Couple stress theory for solids, International Journal of Solids and Structures, Vol. 48, No. 18, pp. 2496-2510, 2011. | ||
آمار تعداد مشاهده مقاله: 651 تعداد دریافت فایل اصل مقاله: 507 |