تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,124,723 |
تعداد دریافت فایل اصل مقاله | 97,233,317 |
بررسی نقش شاخصهای پوشش گیاهی و مؤلفههای جغرافیایی مکان بر عمق نوری هواویزهای فصلی ایران | ||
فیزیک زمین و فضا | ||
مقاله 14، دوره 45، شماره 1، فروردین 1398، صفحه 211-233 اصل مقاله (1.1 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2018.260582.1007019 | ||
نویسندگان | ||
محمود احمدی* 1؛ علیرضا شکیبا2؛ عباسعلی داداشی رودباری3 | ||
1دانشیار، گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران | ||
2دانشیار، گروه مطالعات سنجش از دور و GIS، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران | ||
3دانشجوی دکتری، گروه جغرافیای طبیعی، دانشکده علوم زمین، دانشگاه شهید بهشتی، تهران، ایران | ||
چکیده | ||
عمق نوری هواویزها (AOD) کمیتی بیبعد است که میزان عبوردهی پرتو نور در جو را نشان میدهد. شناخت AOD برای درک تأثیرات آن بر کیفیت هوا و ارائه راهکاریهای مقابله با آن ضروری است. هدف از این پژوهش بررسی نقش مؤلفههای جغرافیایی مکان و شاخصهای پوشش گیاهی بر عمق نوری هواویزهای فصلی (AOD550nm) موجود در جو ایران است. در این پژوهش از فرآورده 6 سنجنده MODIS ماهواره Aqua برای ارزیابی مقادیر AOD، NDVI و EVI به شکل فصلی طی دوره آماری 2017-2003 استفاده شد. جنوب غرب، شرق و سواحل خلیجفارس بالاترین و شمال غرب کشور و زاگرس کمترین مقدار AOD را به خود اختصاص دادهاند. دلیل بالا بودن مقدار AOD در ایران بار ورودی گردوغبار، احتراق سوختهای فسیلی و کاهش ارتفاع لایهمرزی (BLH) در دوره سرد سال است چراکه اکثر آلایندههای جوی در لایه مرزی منتشر میشود و از راه فرآیندهای تلاطمی لایه آمیخته همگن میشود. همبستگی AOD با ارتفاع و عرض جغرافیایی منفی و در سطح 5 درصد معنیدار میباشد. همبستگی منفی معنیدار بین شاخصهای EVI، NDVI و AOD در فصول تابستان و انتقالی سال وجود دارد بهطوریکه کاستی پوشش گیاهی با افزایش AOD در هر فصل با یکدیگر متناظرند. رگرسیون وزندار جغرافیایی (GWR) نشان داد که مقدار پوشش گیاهی توانایی بالایی در کنترل هواویزهای وردسپهر پایینی و ارتفاعات نقش سدکنندگی مسیر ترابرد ذرات را دارند و در نتیجه بر انتشار گردوغبار در حالت محلی و منطقهای نیز تأثیر خواهند داشت. | ||
کلیدواژهها | ||
عمق نوری هواویزها؛ شاخصهای پوشش گیاهی؛ سنجنده MODIS؛ ایران | ||
عنوان مقاله [English] | ||
Investigating the role of vegetation indices and geographic components on seasonal aerosol optical depth over Iran | ||
نویسندگان [English] | ||
Mahmoud Ahmadi1؛ Ali Reza Shakiba2؛ Abbas Ali Dadashi Roudbari3 | ||
1Associate Professor, Department of Physical Geography, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran | ||
2Associate Professor, Department of Remote Sensing and GIS, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran | ||
3Ph.D. Student, Department of Physical Geography, Faculty of Earth Sciences, Shahid Beheshti University, Tehran, Iran | ||
چکیده [English] | ||
Investigation of the role of vegetation indices and geographic components on seasonal aerosol optical depth (AOD) over the Iranian region is carried out. Aerosols are suspended particles in an air that have diameters between 0.001 and 100 micrometers. Aerosols play an important role in the radiation properties of atmosphere and hence affect the earth climate system. Vegetation cover can impede surface erosion by wind and hence, has a close relationship with the emission. Dust emission leading to dust events in urban area can have an adverse effect on human health as well as human activities, for example by reduction in visibility. This research aims to seasonally evaluate the roles of geographical locations and vegetation indices on AOD over Iran, based on satellite data. This includes the evaluations the role of each of these components in AOD550 nm variations. In this study, the daily data of the 6-level 3 products (MYD08_M3_6) including AOD550 nm, Deep Blue Algorithm, MODIS sensor data, Aqua satellite data, are used. Pixel data were downloaded over the Iranian region from 2003 to 2017 with a spatial resolution of 1 × 1 arc. Two indicators, namely the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) of the Aqua Satellite, for the study period with AOD data were used. The optical sensitivity of aerosols data was verified using the Aqua Satellite data from the Aerosol Robotic Network (AERONET). The GWR and OLS methods were used to find the spatial relationships of aerial photo sensor optical depths with geographic location and vegetation indices. The average values of AOD over Iran, based on the data of the Aqua, are between (0.11 for spring) and (0.16 for autumn) respectively. The average AOD value in the spring indicates the enhancement of dust events in the region. In winter, the average AOD value over Iran is 0.12, with the lowest standard deviation. In the summer, according to Aqua satellite data, this value is 0.133, with the maximum scatters and deviation from the largest mean observed value. Based on the EVI and NDVI indexes, the maximum statistical values, including the range of changes, maximum, average, scatter level and deviation from the typical values of both indicators were observed in the warm season of the year. The maximum EVI index peaked in the summer with 0.478 and the lowest of 0.043 in the winter. The maximum NDVI index, like the EVI index, was obtained for the summer with 0.777 and its lowest value is -0.69 for the spring. The maximum correlation between the atmospheric optical depth and geographic components of the area is for the altitude and then the latitude and then the longitude. The correlation between the AOD with the altitude and latitude of location of the area is negative and significant, and the correlation of the AOD with longitude is not significant in any seasons. There is a negative correlation between AOD and NDVI, and also EVI index in all seasons, although it is 0.039 in winter, which is relatively low. The results of the AOD assessment show that the maximum spring and autumn has the lowest average AOD over the Iranian area. This is due to the combination of dry conditions and relatively strong wind speeds in the spring those results in dust storms that increase the amount of AOD. In contrast, the maximum AOD over Iran is for the spring with a value of 0.48 that occurs in southwestern part of Iran. The second largest focal point, highlighted in all AOD seasons, is for the Persian Gulf coast area between Bushehr and Bandar Abbas. AOD over this coastal area can be associated with favorable wind conditions in mineral dust deposition which transported to the area and sea salt. Other areas with high AOD can be found in the Makran coastal area in the southeast of Iran, between the plain of Lut and the Mangrove plain, as pervious AOD study in southeastern Iran indicted. Based on the climate distribution of the EVI and NDVI vegetation indices and the seasonal spatial variation of aerosols, it is shown that vegetation factor in dust emission efficiency varies from one region to another with season. This regional disparity is due to the variation of vegetation-humus-release and the coupling of two or more of these factors; therefore, vegetation can significantly improve the treatment of dusty storm areas with the internal sources in the country. The maximum correlations with the geographic components of the location with the optical depth over the Iranian area are for the elevation and then the latitude and then the longitude. The correlation between the AOD with height and latitude is negative and with 5% level. | ||
کلیدواژهها [English] | ||
Aerosol Optical Depth, Vegetation indices, MODIS Sensor, Iran | ||
مراجع | ||
احمدی، ح.، احمدی، م. و داداشی رودباری، ع.، 1397، آشکارسازی اثرات تغییر اقلیم از طریق دمای هوا بر پدیده ریزگرد بر اساس سناریوهای واداشت تابشی RCP (مطالعه موردی: منطقه غرب ایران، استان ایلام)، دومین همایش بینالمللی گردوغبار، 5 تا 7 اردیبهشت 1397 دانشگاه ایلام. احمدی، م.، داداشی رودباری، ع. و جعفری، م، 1398، تاثیر ارتفاع لایهمرزی در توفانهای گردوغبار جنوب غرب ایران (مطالعه موردی 21 تا 24 فوریه 2016)، مخاطرات محیط طبیعی, 8(19)، 151-174. احمدی، م.، و داداشی رودباری، ع.، 1397 الف، ارزیابی عمق نوری هواویزهای (AOD550nm) فصلی ایران مبتنی بر برونداد مدل پایشگر ترکیبات جوی و آبوهوایی (MACC)، دومین همایش بینالمللی گردوغبار، 5 تا 7 اردیبهشت 1397 دانشگاه ایلام. احمدی، م.، و داداشی رودباری، ع.، 1397 ب، پایش فصلی روند عمق نوری هواویزها (AOD550nm) در ایران مبتنی بر الگوریتم Deep Blue سنجنده MODIS، دومین کنفرانس ملی آب و هواشناسی ایران، 19 اردیبهشت 1397، دانشگاه فردوسی مشهد. انصافیمقدم، ط.، خوش اخلاق، ف.، شمسی پور، ع.، اخوان، ر.، صفرراد، ط. و امیراصلانی، ف.، 1396، پایش و ارزیابی اثرات گردوغبار بر تغییرات بارش در جنوب غرب ایران ا استفاده از سنجش از دور و GIS، سنجش از دور و GIS ایران، 9 (2)، 98-79. براتی، غ.، مرادی، م.، شامخی، ع. و داداشی رودباری، ع.، 1396، تحلیل روابط طوفانهای غباری جنوب ایران با کمفشار سِند، مخاطرات محیط طبیعی، 6 (13)، 91-108. برتینا، ه.، صیاد، غ.، متین فر، ح. و حجتی، س.، 1393، توزیع زمانی-مکانی ذرات معلق اتمسفری در غرب کشور بر مبنای دادههای طیفی سنجنده MODIS، نشریه پژوهشهای حفاظت آب و خاک، 21 (4)، 137-119. بهرامی، ح. ع.، جلالی، م.، درویشی بلورانی، ع. و عزیزی، ر.، 1392، مدلسازی مکانی-زمانی وقوع طوفانهای گردوغبار در استان خوزستان، سنجشازدور و GIS ایران، 5 (2)، 95-114. بیات، ر.، جعفری، سمیه، قرمز چشمه، ب. و چرخابی، ا. م.، 1395، مطالعه تأثیر ریزگردها بر تغییرات پوشش گیاهی (مطالعه موردی: تالاب شادگان، خوزستان)، سنجشازدور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 7 (2)، 17-32. بیات، ع.، 1392، دسته بندی هواویزهای جوی با استفاده از دادههای قطبیده شیدسنج خورشیدی، پایان نامه دکتری، دانشکده علومپایه، دانشگاه تحصیلات تکمیلی علومپایه زنجان. خوش سیما، س.، علی اکبری بیدختی، ع. و احمدیگیوی، ف.، 1392، تعیین عمق نوری هواویزها با استفاده از دادههای دید افقی و سنجش از دور در دو منطقه شهری در ایران، مجله فیزیک زمین و فضا، 39 (1)، 163-174. خوشاخلاق، ف.، نجفی، م. و صمدی، م.، 1391، واکاوی همدید رخداد گردوغبار بهاره در غرب ایران. پژوهشهای جغرافیای طبیعی، 44 (2)، 99-124. زارعی، ف.، قرایلو، م. و علیزاده چوبری، ا.، 1396، تأثیر هواویزها بر بارش در شرایط رطوبتهای نسبی متفاوت: مطالعه موردی، مجله ژئوفیزیک ایران، 1 (2)، 135-155. عساکره، ح.، 1390، مبانی اقیلم شناسی آماری، انتشارات دانشگاه زنجان، زنجان-ایران. کاویانیراد، م.، 1389، تحلیل فضایی مخاطرات محیطی و بحرانهای بومشناسی در ایران، فصلنامه مطالعات راهبردی، دوره 13، شماره 48، 33-58. مسعودیان، ا.، 1390، آبوهوای ایران، انتشارات شریعه توس مشهد، چاپ اول، مشهد، 288 ص. معصومی، ا.، 1391، مطالعه پارامترهای فیزیکی هواویزهای جو زنجان با استفاده از اندازهگیریهای شیدسنج خورشیدی، دادههای ماهوارهای، مدل هواشناسی HYSPLIT و دادههای NCEP/NCAR، پایان نامه دکتری، دانشکده علومپایه، دانشگاه تحصیلات تکمیلی علومپایه زنجان. نصر آزادانی، آ.، 1394، بررسی تغییرات رطوبت خاک و بارش و تأثیر آنها بر تولید غبار در منطقه بینالنهرین با استفاده از دادههای سامانه MODIS، سیستم GLDAS و ماهواره TRMM در فاصله سالهای 2001 تا 2014، پایاننامه کارشناسی ارشد، دانشکده علومپایه، دانشگاه تحصیلات تکمیلی علومپایه زنجان.
Ahmadi, M. and DadashiRoudbari, A., 2017, Regional modeling of dust storm of February 8, 2015 in the southwest of Iran, Arabian Journal of Geosciences, 10(21), 459. Ahmadi, M., Kashki, A. and Dadashi Roudbari, A., 2018, Spatial modeling of seasonal precipitation–elevation in Iran based on aphrodite database, Modeling Earth Systems and Environment, 4(2), 619-633. Alam, K., Trautmann, T., Blaschke, T. and Subhan, F., 2014, Changes in aerosol optical properties due to dust storms in the Middle East and Southwest Asia, Remote Sensing of Environment, 143, 216-227. Alizadeh‐Choobari, O., Ghafarian, P. and Owlad, E., 2016, Temporal variations in the frequency and concentration of dust events over Iran based on surface observations, International Journal of Climatology, 36(4), 2050-2062. Arkian, F. and Nicholson, S. E., 2018, Long-term variations of aerosol optical depth and aerosol radiative forcing over Iran based on satellite and AERONET data, Environmental monitoring and assessment, 190(1), 1. Bangert, M., Nenes, A., Vogel, B., Vogel, H., Barahona, D., Karydis, V. A., Kumar, P., Kottmeier, C. and Blahak, U., 2012, Saharan dust event impacts on cloud formation and radiation over Western Europe, Atmospheric Chemistry and Physics 12(9), 4045. Bellouin, N., Boucher, O., Haywood, J. and Reddy, M. S., 2005, Global estimate of aerosol direct radiative forcing from satellite measurements, Nature, 438(7071), 1138. Charlton, M., Fotheringham, S. and Brunsdon, C., 2009, geographically weighted regression. White paper. National Centre for Geocomputation, National University of Ireland Maynooth. Engelstaedter, S., Kohfeld, K. E., Tegen, I. and Harrison, S. P., 2003, Controls of dust emissions by vegetation and topographic depressions: An evaluation using dust storm frequency data, Geophysical Research Letters, 30(6). Fallah Ghalhari, G. F. and Dadashi Roudbari, A. D., 2018, an investigation on thermal patterns in Iran based on spatial autocorrelation, Theoretical and Applied Climatology, 131(3-4), 865-876. Floutsi, A. A., Korras-Carraca, M. B., Matsoukas, C., Hatzianastassiou, N. and Biskos, G., 2016 Climatology and trends of aerosol optical depth over the Mediterranean basin during the last 12 years (2002–2014) based on Collection 006 MODIS-Aqua data, Science of the Total Environment, 551, 292-303. Fotheringham, A. S., Crespo, R. and Yao, J., 2015, Geographical and temporal weighted regression (GTWR), Geographical Analysis, 47(4), 431-452. Gallo, K., Ji, L., Reed, B., Eidenshink, J. and Dwyer, J., 2005, Multi-platform comparisons of MODIS and AVHRR normalized difference vegetation index data, Remote Sensing of Environment, 99(3), 221-231. Gkikas, A., Hatzianastassiou, N., Mihalopoulos, N., Katsoulis, V., Kazadzis, S., Pey, J., Querol, X. and Torres, O. 2013, The regime of desert dust episodes in the Mediterranean based on contemporary satellite observations and ground measurements, Atmos. Chem, Phys. Discuss, 13, 16247-16299. Gong, S. L., Zhang, X. Y., Zhao, T. L. and Barrie, L. A., 2004, Sensitivity of Asian dust storm to natural and anthropogenic factors, Geophysical Research Letters, 31(7). Goudie, A. S. and Middleton, N. J., 2006, Desert dust in the global system. Springer Science & Business Media. Guo, Y., Hong, S., Feng, N., Zhuang, Y. and Zhang, L., 2012, Spatial distributions and temporal variations of atmospheric aerosols and the affecting factors: a case study for a region in central China, International journal of remote sensing, 33(12), 3672-3692. Hsu, N. C., Gautam, R., Sayer, A. M., Bettenhausen, C., Li, C., Jeong, M. J., Tsay, S.C. and Holben, B.N., 2012, Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010, Atmospheric Chemistry and Physics, 12(17), 8037. IPCC 2013, Climate Change 2013: The Physical Science Basis. In: Stocker, T.F., Qin, D., Plattner, G.K., Tignor,M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (Eds.), Working Group I Contribution to the IPSS 5th Assessment Report – Changes to the underlying Scientific/Technical Assessment, Cambridge University Press, Cambridge, UK & New York, USA. Ji, L. and Peters, A. J., 2003, Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices, Remote Sensing of Environment, 87(1), 85-98. Kaskaoutis, D. G., Houssos, E. E., Rashki, A., Francois, P., Legrand, M., Goto, D., Bartzokas, A., Kambezidis, H. D. and Takemura, T., 2016, The Caspian Sea–Hindu Kush Index (CasHKI): a regulatory factor for dust activity over southwest Asia, Global and Planetary Change, 137, 10-23. Klingmüller, K., Pozzer, A., Metzger, S., Stenchikov, G. L. and Lelieveld, J., 2016, Aerosol optical depth trend over the Middle East, Atmospheric Chemistry and Physics, 16(8), 5063-5073. Kumar, R., Barth, M. C., Pfister, G. G., Naja, M. and Brasseur, G. P., 2014, WRF-Chem simulations of a typical pre-monsoon dust storm in northern India: influences on aerosol optical properties and radiation budget, Atmospheric Chemistry and Physics, 14(5), 2431-2446. Kuniyal, J. C., Thakur, A., Thakur, H. K., Sharma, S., Pant, P., Rawat, P. S. and Moorthy, K. K., 2009, Aerosol optical depths at Mohal-Kullu in the northwestern Indian Himalayan high altitude station during ICARB. Journal of Earth System Science, 118(1), 41-48. Lee, E. H. and Sohn, B. J., 2009, Examining the impact of wind and surface vegetation on the Asian dust occurrence over three classified source regions, Journal of Geophysical Research: Atmospheres, 114(D6). Li, C., Mao, J., Lau, K. H. A., Chen, J. C., Yuan, Z., Liu, X. and Liu, G., 2003, Characteristics of distribution and seasonal variation of aerosol optical depth in eastern China with MODIS products, Chinese Science Bulletin, 48(22), 2488-2495. Li, R., Min, Q. L. and Harrison, L. C., 2010, A case study: The indirect aerosol effects of mineral dust on warm clouds, Journal of the Atmospheric Sciences, 67(3), 805-816. Li, Z., Xia, X., Cribb, M., Mi, W., Holben, B., Wang, P., Chen, H., Tsay, S. C., Eck, T. F., Zhao, F. and Dutton, E. G., 2007, Aerosol optical properties and their radiative effects in northern China, Journal of Geophysical Research: Atmospheres, 112(D22). Luo, T., Yuan, R. and Wang, Z., 2014, On factors controlling marine boundary layer aerosol optical depth, Journal of Geophysical Research: Atmospheres, 119(6), 3321-3334. Mahowald, N. M., Kloster, S., Engelstaedter, S., Moore, J. K., Mukhopadhyay, S., McConnell, J. R., Albani, S., Doney, S. C., Bhattacharya, A., Curran, M. A. J. and Flanner, M. G., 2010, Observed 20th century desert dust variability: impact on climate and biogeochemistry, Atmospheric Chemistry and Physics, 10(22), 10875-10893. Mao, K. B., Ma, Y., Xia, L., Chen, W. Y., Shen, X. Y., He, T. J. and Xu, T. R., 2014, Global aerosol change in the last decade: An analysis based on MODIS data, Atmospheric environment, 94, 680-686. Mao, R., Ho, C. H., Feng, S., Gong, D. Y. and Shao, Y., 2013, the influence of vegetation variation on Northeast Asian dust activity, Asia-Pacific Journal of Atmospheric Sciences, 49(1), 87-94. Masoumi, A., Khalesifard, H. R., Bayat, A. and Moradhaseli, R., 2013, Retrieval of aerosol optical and physical properties from ground-based measurements for Zanjan, a city in Northwest Iran, Atmospheric research, 120, 343-355. Nakaya, T., 2014, GWR4 user manual. WWW Document. Available online: http://www. St-andrews. Ac. uk/geoinformatics/wp-content/uploads/GWR4manual_201311. Pdf (accessed on 4 November 2013). Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E. and Gill, T. E., 2002, Environmental characterization of global sources of atmospheric soil dust derived from the nimbus7 toms absorbing aerosol product, rev, In Reviews of Geophysics. Rashki, A., Kaskaoutis, D. G., Eriksson, P. G., Rautenbach, C. D. W., Flamant, C. and Vishkaee, F. A., 2014, Spatio-temporal variability of dust aerosols over the Sistan region in Iran based on satellite observations, Natural hazards, 71(1), 563-585. Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., Li, R. R., Ichoku, C., Levy, R. C., Kleidman, R. G. and Eck, T. F., 2005, The MODIS aerosol algorithm, products, and validation, Journal of the atmospheric sciences, 62(4), 947-973. Sayer, A. M., Munchak, L. A., Hsu, N. C., Levy, R. C., Bettenhausen, C., and Jeong, M. J., 2014, MODIS Collection 6 aerosol products: Comparison between Aqua's e‐Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. Journal of Geophysical Research: Atmospheres, 119(24). Seinfeld, J. H. and Pandis, S. N., 2016, Atmospheric chemistry and physics: from air pollution to climate change, John Wiley & Sons. Shinoda, M., Gillies, J. A., Mikami, M. and Shao, Y., 2011, temperate grasslands as a dust source: Knowledge, uncertainties, and challenges, Aeolian Research, 3(3), 271-293. Tokunaga, M. and Thug, V. T., 2002, Finding the relationship between vegetation index and coherence signature to utilize the product of radar interferometry in land cover application. Asian Association on Remote Sensing. Wardlow, B. D., Egbert, S. L. and Kastens, J. H., 2007, Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains, Remote Sensing of Environment, 108(3), 290-310. Wiggs, G. F. S., Livingstone, I., Thomas, D. S. G. and Bullard, J. E., 1994, Effect of vegetation removal on airflow patterns and dune dynamics in the southwest Kalahari Desert, Land Degradation & Development, 5(1), 13-24. Zhang, J. and Reid, J. S., 2009, an analysis of clear sky and contextual biases using an operational over ocean MODIS aerosol product, Geophysical Research Letters, 36(15). Zhang, J. and Reid, J. S., 2010, A decadal regional and global trend analysis of the aerosol optical depth using a data-assimilation grade over-water MODIS and Level 2 MISR aerosol products, Atmospheric Chemistry and Physics, 10(22), 10949-10963. Zou, X. K. and Zhai, P. M., 2004, Relationship between vegetation coverage and spring dust storms over northern China, Journal of Geophysical Research: Atmospheres, 109(D3). | ||
آمار تعداد مشاهده مقاله: 1,643 تعداد دریافت فایل اصل مقاله: 870 |