تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,506 |
تعداد مشاهده مقاله | 124,125,002 |
تعداد دریافت فایل اصل مقاله | 97,233,504 |
تشخیص و تخمین عمق خطوارهها در شمالغرب شهرستان ایرانشهر با استفاده از دادههای مغناطیس و الکترومغناطیس هوابرد | ||
فیزیک زمین و فضا | ||
مقاله 3، دوره 45، شماره 1، فروردین 1398، صفحه 31-46 اصل مقاله (3.07 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2018.259304.1007013 | ||
نویسندگان | ||
محدثه عبداللهی1؛ علیرضا عربامیری* 2؛ ابوالقاسم کامکار روحانی2؛ علی نجاتی کلاته2؛ محمدرضا اخوان اقدم3 | ||
1دانشجوی کارشناسی ارشد، گروه ژئوفیزیک، دانشکدۀ مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، شاهرود، ایران | ||
2دانشیار، گروه ژئوفیزیک، دانشکدۀ مهندسی معدن، نفت و ژئوفیزیک، دانشگاه صنعتی شاهرود، شاهرود، ایران | ||
3کارشناس ارشد، سازمان زمینشناسی و اکتشافات معدنی کشور، تهران، ایران | ||
چکیده | ||
روشهای مختلفی جهت شناسایی و همچنین تخمین عمق بیهنجاریهای مدفون در روش مغناطیس و الکترومغناطیس هوابرد وجود دارد. در پژوهش حاضر، با استفاده از دادههای مغناطیس هوابرد برداشت شده در منطقهای حوالی 125 کیلومتری شمالغرب شهرستان ایرانشهر، به تشخیص خطوارههای مغناطیسی با اعمال فیلترهایی نظیر برگردان به قطب، مشتق افقی مرتبه اول، فیلتر زاویه تیلت و سیگنال تحلیلی بر روی این دادهها پرداخته شد. همچنین با استفاده از روش واهمامیخت اویلر، تخمین عمق این خطوارهها در این منطقه انجام شده است. سپس نتایج بهدست آمده از روش مغناطیس هوابرد با نتایج حاصل از مطالعات الکترومغناطیس هوابرد مربوط به فرکانسهای 900، 7200 و 56000 هرتز، مقایسه و همچنین یافتههای حاصل از این دو روش با اطلاعات زمینشناسی منطقه، اعتبارسنجی شده است. مطالعات انجام شده منجر به شناسایی حدود 2۲ خطواره مغناطیسی در منطقه شد که براساس نتایج اعتبارسنجی، 4 خطواره منطبق بر گسلهای اصلی منطقه میباشند. این گسلها دارای روند تقریبی شمالشرق-جنوبغرب هستند. میانگین عمق تقریبی گسلهای تشخیص داده شده بهوسیله اعمال روش واهمامیخت اویلر بر روی دادههای مغناطیسسنجی در حدود 200-100 متر تخمین زده شده است. | ||
کلیدواژهها | ||
واهمامیخت اویلر؛ مغناطیس هوابرد؛ الکترومغناطیس هوابرد؛ برگردان به قطب؛ مشتقات افقی مرتبه اول؛ سیگنال تحلیلی | ||
عنوان مقاله [English] | ||
Determination and depth estimation of lineaments in Northwest of Iranshahr city using airborne magnetic and electromagnetic data | ||
نویسندگان [English] | ||
Mohadeseh Abdollahi1؛ Ali Reza Arab Amiri2؛ Abolghasim Kamkar Rouhani2؛ Ali Nejati Kalateh2؛ Mohammad Reza Akhavan Aghdam3 | ||
1M.Sc. Student, Department of Geophysics, School of Mining, Petroleum & Geophysics Engineering, Shahrood University Technology, Shahrood, Iran | ||
2Associate Professor, Department of Geophysics, School of Mining, Petroleum & Geophysics Engineering, Shahrood University Technology, Shahrood, Iran | ||
3Senior Expert, Geological Survey & Mineral Exploration of Iran, Tehran, Iran | ||
چکیده [English] | ||
Airborne magnetic and electromagnetic methods are among the most efficient geophysical techniques for the detection of buried anomalies. There are several methods that can be used to estimate the depths of the buried anomalies. In general, modeling methods can be used not only to estimate the depths of the buried anomalies, but also, to determine physical and other geometric factors of the anomalies such as lateral extension, thickness, dip and so on. In this research, magnetic lineaments have been determined using the airborne magnetic data, acquired in a part of Bazman area with an area of 24 square kilometers located in about 125 kilometers northwest of the city of Iranshahr. By applying filters such as reduction to the pole, first horizontal derivatives, analytical signal, tilt angle and upward continuation filters. For processing and interpretation of the airborne magnetic data, the Oasis Montaj module of Geosoft software package has been used. The processing, display and interpretation of the airborne electromagnetic data have been made Conductivity Depth Imaging (CDI) using EM Flow and Profile Analyst software packages of Encom Company. Furthermore, the depths of the lineaments in this area have been estimated using Euler deconvolution method. Then, the obtained results have been compared with the results of airborne electromagnetic investigations for the frequencies of 900, 7200 and 56000 Hz using horizontal and vertical coplanar coils. Also, the obtained findings from the airborne magnetic and electromagnetic methods have been validated by the geological information of the area. The airborne magnetic and electromagnetic data of the area have been acquired using airborne magnetometer and DIGHEM5 electromagnetic instruments, respectively. The airborne magnetic and electromagnetic surveys over the study area have been made by Geological Survey of Iran (GSI) in 2005. As a result of this study, 22 magnetic lineaments in the area have been identified in which 4 lineaments coincide on the main faults of the area as the validation results indicate. In this regard, the main faults can be observed on the obtained magnetic maps in which different filters have been applied, however, the tilt angle magnetic map indicates the main faults of the area more clearly. This implies the better performance of the tilt angle filter over the other filters in displaying magnetic lineaments. Totally, 22 magnetic lineaments have been determined on the magnetic maps. By the results of this study, we can conclude that the main faults of the area have an approximate trend of northeast-southwest. Some of these faults, which have been determined from the airborne magnetic investigations of the area, cannot be determined from geological studies of the area as they have been overlain by the Quaternary sediments. The different performances of these main faults on the lithological variations and tectonic activities of the area have been clearly evident by the result of this study. The main faults of the area have also played a vital role on the formation of folds and fractures, and occurrence of weak earthquakes. The approximate depths of the lineaments, which have been estimated by applying the Euler deconvolution method on the acquired magnetic data are around 100-200 meters. | ||
کلیدواژهها [English] | ||
Euler deconvolution, Airborne magnetic, Airborne electromagnetic, Reduction to the pole, First horizontal derivatives, Analytic signal | ||
مراجع | ||
آقانباتی، س. ع.، زمینشناسی ایران،1383، چاپ سوم، سازمان زمینشناسی و اکتشافات معدنی کشور. اسدیان، ا.، مرادزاده، ع.، عرب امیری، ع.ر.، نجاتی کلاته، ع. و رجبی، د.، 1393، استفاده از تبدیل مستقیم دادههای الکترومغناطیس هوابرد در حوزه بسامد، به منظور بهبود نتایج معکوسسازی به روش تجزیه مقادیر تکین، م. فیزیک زمین و فضا، 40 (4)، امیرپور اصل میاندوآب، ا. و سهرابی، ق.، 1394، پردازش و تفسیر داده های مغناطیس هوابرد برای تعیین مرز ساختارهای مغناطیسی و محل گسل های مدفون ایران، فصلنامه علوم زمین، 25(97)، 115-125. خلقی خسروی، م. ح. و محمدی گل، ا.، 1383، نقشهی زمینشناسی 100000/1 چاهسنگی، سازمان زمینشناسی کشور. شیرزادیتبار، ف.، 1389، معکوسسازی یک بعدی دادههای الکترومغناطیسی هوابرد با استفاده از روش اُکام برای بدست آوردن رسانایی لایهها، چهاردهمین کنفرانس ژئوفیزیک ایران، تهران، ایران. علیپور، آ.، نجاتی کلاته، ع. و عربامیری، ع.ر.، 1395، بهبود مدلسازی معکوس دادههای الکترومغناطیس هوایی حوزهی فرکانس با اعمال قید عمقی، م. فیزیک زمین و فضا، 42 (1)، 133-144.
Arab-Amiri, A. R., Moradzadeh, A., Fathianpour, N. and Siemon, B., 2010, Inverse modeling of EM data using a new inversion algorithm: J Mining Environ, 1, 9-20. Ali, M. Y., Fairhead, J. D., Green, C. M. And Noufal, A., 2017, Basement structure of the United Arab Emirates derived from an analysis of regional gravity and aeromagnetic database: J Tectonophysics, 712-713, 503-522. Amara, M., Hamoudi, M., Djemai, S. and Bendaoud, A., 2016, New insight of the geological structures and tectonic framework of Ahnet an northwestern part of tin Zaouatine terranes (western Hoggar, Algeria) constrains from aeromagnetic, gamma ray, and remote sensing data: J Arabian Journal of Geosciences, 10, 396. Aitken, A. R. A. and Betts, P. G., 2009, Multi- scale integrated structural and aeromagnetic analysis to guide tectonic models: An example from the eastern Musgrave Province, Central Australia: J Tectonophysics, 476, Issue 3, p. 418-435. Barnov, V., 1957, A new method for interpretation of aeromagnetic maps: Pseudo gravimetric anomalies: J Geophysics, 22, 359-383. Baranov, V. and H, Naudy, 1964, Numerical calculation of the formula of reduction to the magnetic pole: J Geophysics, 29, 67–79. Blackly, R. J. and Simpson, R. W., 1986, Approximating edges of source bodies from, magnetic or gravity anomalies: J Geophysics, 51, 1494-1498. Blackly, R. J., 1996, Potential Theory in Gravity and magnetic application: J Cambridge University Press, 441 pp. Cooper, G. R. J. and Cowan, D. R., 2006, Enhancing potential field data using filters based on the local phase: J Computers & geosciences, 32, 1585–159. Cordell, L. and Grauch, V. J. S., 1985, Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico, in W. J. Hinzc, ed., The utility of regional gravity and magnetic anomaly: J Society of Exploration Geophysicists, 181-197. De Castro, D. L., Fuck, R. A., Phillips, J. D., Vidotti, R. M., Bezerra, F. H. and Dantas, E. L., 2014, Crustal structure beneath the Paleozoic Parnaíba Basin revealed by airborne gravity and magnetic data, Brazil: J Tectonophysics, 614, 128-145. Dufréchou, G., Harris, L. B. and Corriveau, L., 2014, Tectonic reactivation of transverse basement structures in the Grenville orogen of SW Quebec, Canada: insights from gravity and aeromagnetic data: J Precambrian Res, 241, 61–84. pbEncom, 2012, Em Flow Export manual. Holden, E.-J., Wong, J. C., Kovesi, P., Wedge, D., Dentith, M. and Bagas, L., 2012, Identifying structural complexity in aeromagnetic data: An image analysis approach to greenfields gold exploration: J Ore Geology Reviews, 46, 47–59. Horrocks, T., Holden, E. J., Wedge, D. and Wijns, C., 2018, A nonparametric boundary derection technique applied to 3D inverted surveys of the kevitsa Ni-Cu- PGE deposit: J Geophysics, 83, IM1-IM13. H. Khalil, M., 2016, Subsurface faults detection based on magnetic anomalies investigation: A field example at Taba protectorate, South Sinai: J Applied Geophysics, 131, 123-132. Liberty, L. M., Hemphill-Haley, M. A. and Madin, I. P., 2003, The Portland Hills Fault: uncovering a hidden fault in Portland, Oregon using high-resolution geophysical methods: J Tectonophysics, 368, 89-103. Macnae, J. C., Smith, R., Poker, B. D., Lamontagne, Y. and Klinkerts, P. S., 1991, Conductivity-depth maging of airborne electromagnetic step response data: J Geophysics, 56, 102-114. Ma, G., 2013, Edge detection of potential field data using improved local phase filter, Exploration Geophysics, 44(1), 36-41. Miller, H. G. and Singh, V., 1994, Potential field tilt -A new concept for location of potential field sources: J Applied Geophysics, 32, 213-217. Nabighian, M. N., 1972, The analytic signal of two-dimensional magnetic bodies with polygonal cross-section: Its properties and use for automated anomaly interpretation: J Geophysics, 37, 507-517. Roest, W. R., Verhoef, J. and Pilkington, M., 1992, Magnetic interpretation using the 3D analytic signal: J Geophysics, 57, 116-125. Verduzco, B., Fairhead, J. D., Green, C. M. and MacKenzie, C., 2004, New insights into Magnetic derivatives for structural mapping: J The Leading Edge 23, 116-119. Telford, W. M., Geldart, L. P. and Sheriff, R. E., 1990, Applied geophysics “2ndEd: Cambridge University Press”.770pp. Thompson, D. T., 1982, A new technique for making computer-assisted depth estimates from magnetic data: J Geophysics, 47, 31-37. | ||
آمار تعداد مشاهده مقاله: 1,156 تعداد دریافت فایل اصل مقاله: 1,121 |