تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,123,767 |
تعداد دریافت فایل اصل مقاله | 97,231,921 |
بهرهگیری از مدل سرشتی توزیع بزرگا برای گسل شمال تبریز در مطالعات تحلیلخطر و تأثیرات آن در برآورد پارامتر شتاب و منحنی خطر زمینلرزه | ||
فیزیک زمین و فضا | ||
مقاله 4، دوره 45، شماره 3، آذر 1398، صفحه 537-552 اصل مقاله (1.59 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2019.274820.1007082 | ||
نویسندگان | ||
بهزاد ملکی1؛ حبیب رحیمی* 2؛ وحید ملکی3 | ||
1دانشآموخته کارشناسی ارشد، گروه فیزیک زمین، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران | ||
2دانشیار، گروه فیزیک زمین، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران | ||
3دانشآموخته دکتری، گروه فیزیک زمین، مؤسسه ژئوفیزیک، دانشگاه تهران، تهران، ایران | ||
چکیده | ||
با توجه به اهمیت مقادیر شتاب در دوره بازگشتهای بلندمدت و تأثیر آن در طراحی طیف ویژه ساختگاه، انتخاب مناسب توابع توزیع بزرگا برای چشمههای لرزهای مهم بوده و تأثیر قابلتوجهی در نتیجه تحلیلخطر لرزهای دارد. در گستره شمالغرب ایران، گسل شمال تبریز بهدلیل خصوصیات لرزهخیزی منحصربهفرد و تاریخچه جنبش آن از اهمیت ویژهای برخوردار است و با توجه به مطالعات دیرینه لرزهخیزی صورت گرفته و بررسی رفتار این سامانه گسلی، احتمال لغزش سرشتی در بخش میانی آن تأیید شده است. حال اگر این سامانه گسلی رفتاری سرشتی داشته باشد، با انتخاب مدل سرشتی توزیع بزرگا برای محدوده میانی گسل، تحلیلخطر زمینلرزه به روش احتمالاتی انجامشده و نتایج بررسی شده است. تأثیرات انتخاب این مدل از توزیع بزرگا بر مقادیر پارامتر شتاب جنبش نیرومند زمین در دوره بازگشتهای مختلف بررسی شده است. در نتایج تحلیلخطر، با در نظر گرفتن مدل سرشتی برای این بخش از گسل شمال تبریز، نقشه مناطق هم شتاب برای سنگبستر با 5 درصد میرایی برای مؤلفه افقی تهیه شده و مقدار آن برای محدوده شهر تبریز در دوره بازگشت 475 سال از g 28/0 تا g 5/0 متغیر میباشد. همچنین پارامتر شتاب حاصل از جنبش زمین برای محدوده گسلی شمال تبریز با دو مدل توزیع بزرگای نمایی و سرشتی، در دوره بازگشتهای بلندمدت و کوتاهمدت محاسبه و مقایسه شده است. شتاب حاصل از انتخاب مدل سرشتی توزیع بزرگا برای این بخش از گسل، در دوره بازگشتهای بلندمدت بیشتر از مدل نمایی بوده و برعکس، برای دوره بازگشتهای کوتاهمدت کمتر میباشد. | ||
کلیدواژهها | ||
برآورد خطر زمینلرزه؛ مدل سرشتی؛ مدل نمایی؛ چشمه بالقوه زمینلرزه؛ گسل شمال تبریز | ||
عنوان مقاله [English] | ||
Applying the characteristic magnitude distribution Model for North Tabriz Fault (NTF) in Probabilistic Seismic Hazard Assessment (PSHA) and its effects on acceleration parameter and hazard curve | ||
نویسندگان [English] | ||
Behzad Maleki1؛ Habib Rahimi2؛ Vahid Maleki3 | ||
1M.Sc. Graduated, Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran | ||
2Associate Professor, Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran | ||
3Ph.D. Graduated, Department of Earth Physics, Institute of Geophysics, University of Tehran, Tehran, Iran | ||
چکیده [English] | ||
Iranian plateau is a part of Alpine-Himalayan active Mountain, which caused occurring major earthquakes across Iran. Hence, the estimation of seismic hazard parameters is required to design building and structures properly. Importance of acceleration parameter in the long-term return period, consequently affects the on site-specific design spectra for building standard law of countries (ASCE7-5, ASCE7-10, IBC, 038 code and Iranian Seismic Code 2800), so in seismic hazard analyses, selecting recurrence model is an important issue in hazard assessment. North Tabriz Fault (NTF) is one of the most seismotectonically active faults in Iran and it attracts the attention of numerous researchers because of obvious morphologic features and historical seismicity. Probability characteristic slip in intermediate of fault, documented by paleoseismic studies of Hessami et al. (2003), also the mathematical probability density function of the exponential model, are not suitable for sources of repeated large earthquakes. Exponential model is just able to estimate recurrence of small to moderate earthquakes, while recurrence of large magnitude earthquakes is much higher than the extrapolated exponential model. This difference lead to the development of the characteristic earthquake model (Schwartz and Coppersmith, (1984)). In this study, seismic hazard parameters around Tabriz city based on characteristic recurrence model has been investigated. First step in all hazard studies is determining the seismotectonic of the province. Based on this definition, Mirzaei et al. (1998) divided Iran in five major seismotectonic provinces. The covered area in this study is located in Alborz-Azerbaijan Seismic province. In order to have more information regarding the seismic hazard analysis, seismotectonic map of study area is prepared up to a radius distance of 150km from site. In this study both areal and linear seismic source model are considered. The reason for selecting areal seismic source model is due to the lack of enough information about dip and geometry of the fault. Recurrence models are defined for linear seismic sources, for those that there are enough data about them. In this study North Tabriz fault is considered as three separated segments, in which the characteristic recurrence model are used to define the intermediate segment of seismic source. Seismic hazard assessment requires the estimation of strong ground motion. The estimation of peak ground acceleration regard to recurrence model of source, magnitude, source-to-site distance, tectonic properties and source type using attenuation relationships that are the main part of seismic hazard assessment process. Estimation of peak ground motion acceleration in this study for horizontal component is based on the next generation of attenuation relationships for the west 2 project (NGA West 2).In this study, we used attenuation equation reported by Campbell-Bozorgnia (2014) NGA West 2, Kamai et al. (2014) NGA West 2, Idriss (2014) NGA West 2, Chiou-Youngs (2014) NGA West 2 and Boore et al. (2014) NGA West 2. The estimated results show that the segment which modeled by characteristic recurrence model in higher recurrence period, have higher value of acceleration. | ||
کلیدواژهها [English] | ||
Characteristic Magnitude Distribution, Exponential Model, North Tabriz Fault, Seismic Hazard Assessment | ||
مراجع | ||
شیخ الاسلامی، م. ر.، 1393، دانشنامه گسلهای ایران، سازمان زمینشناسی واکتشاف معدنی کشور. ملکی، ب.، رحیمی، ح. و ملکی، و.، ۱۳۹۶، بررسی مشخصه سرشتی گسل شمال تبریز و تاثیر آن در پارامتر های جنبش نیرومند زمین، کنفرانس ملی ساخت و ساز در مناطق لرزه خیز یادبود زلزله ارسباران، CEPA01_010. ملکی، ب.، ۱۳96، تأثیر زمینلرزهای سرشتی گسل شمال تبریز در برآورد پارامترهای جنبش نیرومند زمین به روش احتمالاتی (PSHA) و شبیهسازی زمینلرزه کنترلکننده، پایان نامه کارشناسیارشد، دانشگاه تهران.
Ambraseys, N. N. and Jackson, J. A., 1998 Faulting associated with historical and recent earthquakes in the eastern Mediteranean region, Geophys. J. Int., 133, 390-406. Abrahamson, N. A., 2006, Notes on Probabilistic Seismic Hazard Analysis – An Overview. Rose School, Pavia, Italy. Båth, M., 1981, Earthquake recurrence of a particular type, Pure Appl. Geophys. 119, 1063-1076. Båth, M., 1982, Seismic energy mapping applied to Sweden, Tectonophysics, 81, 85-98. Båth, M., 1983, Earthquake frequency and energy in Greece, Tectonophysics, 95, 233 252. Berberian, M. and Arshadi, S., 1976, On the evidence of the youngest activity of the North Tabriz Fault and the seismicity of Tabriz city, Geol. Surv. Iran Rep., 39, 397-418. Berberian, M. and Yeats, R. S., 1999, Patterns of historical earthquake rupture in the Iranian plateau, Bull. Seismol. Soc. Am., 89, 120-139. Campbell, K. W. and Bozorgnia, Y., 2014, NGA-West2 Ground Motion Model for the Average Horizontal Components of PGA, PGV, and 5% Damped Linear Acceleration Response Spectra. Earthquake Spectra: August 2014, Vol. 30, No. 3, pp. 1087-1115 Chiou, B. S. J. and Youngs, R. R., 2014, Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 30, 1117-1153. Cornell, C. A. 1968, Engineering seismic risk analysis, Bull. Seism. Soc. Am. 58, 1583-1606. Boore, D. M., Stewart, J.P, Seyhan.E and Atkinson, G. M., 2014, NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes, Earthquake Spectra, 30(3), 1057-1085. Davison, F. C. and Scholz, C. H., 1984, Test of the characteristic earthquake model for the Aleutian Arc (abstract), EOS 65, 242. Faridi, M., Burg, J.P., Nazari, H., Talebian, M. and Ghorashi, M., 2017, Active Faults Pattern and Interplay in the Azerbaijan Region (NW Iran), Geotectonics, 428–437. Gardner, J. K. and Knopo, L., 1974, Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull. Seis. Soc. Am., 64(5), 1363-1367. Godinho, J., 2007, Probabilistic seismic hazard analysis an introduction to theoretical basis and applied methodology (master’s dissertation) university of patras, Greece. Gutenberg, B. and Richter, C. F., 1956, Earthquake Magnitude, Intensity, Energy and Acceleration. Bull. Seism. Soc. Am., Vol. 46, pp. 105-145. Hamzehloo, H., Alikhanzadeh, A., Rahmani, M. and Ansari, A., 2012, Seismic hazard maps of Iran, In: Proceedings of the 15th world conference on earthquake engineering, Lisbon, Portugal. Hessami, K., Pantosti, D. and Tabassi, H., 2003, Paleoearthquakes and Slip Rtaes of the North Tabriz Fault, NW Iran: preliminary results. Annals of Geophysics. Vol. 46, N.5. Idriss, M., 2014, An NGA-West2 Empirical Model for Estimating the Horizontal Spectral Values Generated by Shallow Crustal Earthquakes. Earthquake Spectra: August 2014, 30(3), 1155-1177. Ishibe, T. and Shimazaki, K. 2012, Characteristic Earthquake Model and Seismicity around Late Quaternary Active Faults in Japan. 1041–1058. Jackson, J., 1992, Partitioning of strikeslip and convergent motion between Eurasia and Arabia in Eastern Turkey and the Caucasus, J. Geophys. Res., 97, 12471-12479. Kijko, A., 2004, Estimation of the maximum earthquake magnitude, m max. Pure Appl Geophys 161(8), 1655–1681. Lahr, J. C. and Stephens C. D., 1982, Alaska seismic zone: possible example of nonlinear magnitude distribution for faults, Earthquake Notes 53, 66. Mirzaei, N., Gao, M. and Chen, Y. T., 1998, Seismic source regionalization for seismic zoning of Iran: Major seismotectonic provinces; J. Earthquake. Pred. Res. 7, 465–495. Moradi, A. S., Hatzfeld, D. and Tatar, M., 2011, Microseismicity and seismotectonics of the North Tabriz fault (Iran). Tectonophysics 506, 22-30. Mousavi-Bafrouei, S. H., Mirzaei, N. and Shabani, E., 2014, A declustered earthquake catalog for Iranian plateau, Annals of Geophysics, under review.Shahvar, M. P., M. Zare, and S. Castellaro (2013). A unified seismic catalog for the Iranian plateau (1900–2011), Seismol. Res. Lett. 84, 233–249. Nowroozi, A. A., 1985, Empirical relations between magnitudes and fault parameters for earthquakes in Iran, Bull. Seism. Soc. Am., 75(5), 1327-1338. Purcaru, G., 1975, A new magnitude-frequency relation for earthquakes and a classification of relation types, Geophys. J. R. Astr. Soc. 42, 67-69. Kamai, R., Abrahamson, N. A. and Silva, W. J., 2014, Nonlinear Horizontal Site Amplification for Constraining the NGAWest2 GMPEs. Earthquake Spectra, 30(3), 1223-1240. Schwartz, D. P., Coppersmith, K. J. and F. H. Swan, 1984, Methods for estimating maximum earthquake magnitude, Eighth World Conference on Earthquake Engineering Proceedings 1, 279-286. Singh, S. K., Astiz, L. and Havskov H., 1981, Seismic gaps and recurrence periods of large earthquakes along the Mexican subduction zone: a reexamination, Bull. Seism. Soc. Am. 71,827-843. Singh, S. K., Rodriquez, M. and Esteva L., 1983, Statistics of small earthquakes and frequency of large earthquakes along the Mexico subduction zone, Bull. Seisra. Soc. Am. 73, 1779-1796. Taghipour, K., Mahdi Khatib, M., Heyhata, M., Shabanian, E. and Vaezihir, A., 2018, Evidence for distributed active strike-slip faulting in NW Iran: The Maragheh and Salmas fault zone, Tectonophyscis, 742-743, 2018. Utsu, T., 1971, Aftershocks and earthquake statistics (III), J. Fac. Sci. Hokkaido Univ. Ser. VII (Geophys.) 3, 379-441. Urhammer, S. A., Clausen, J. O., Hansen, T., Pedersen, O., 1996, Insulin sensitivity and body weight changes in young white carriers of the codon 64 amino acid polymorphism of the beta 3-adrenergic receptor gene. Diabetes, 45, 1115–20. Wesnousky, S. G., Scholz, C. H., Shimazaki, K. and Matsuda T., 1983, Earthquake frequency distribution and the mechanics of faulting, J. Geophys. Res. 88, 9331-9340. Wells, D. L. and Coppersmith, K. J., 1994, New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement,” Bull. Seism. Soc. Am., 84, 974-1002. Youngs, R. R. and Coppersmith, K. J. 1985, “Implications of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates,” Bull. Seism.Soc.Am., 75, 939-964. | ||
آمار تعداد مشاهده مقاله: 1,100 تعداد دریافت فایل اصل مقاله: 737 |