تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,113,576 |
تعداد دریافت فایل اصل مقاله | 97,217,342 |
پاسخهای فیزیولوژیکی ارقام کنجد به کاربرد نانو منیزیوم و پلیمر زیستی کیتوزان تحت شرایط رژیمهای مختلف آبیاری | ||
به زراعی کشاورزی | ||
مقاله 5، دوره 22، شماره 3، مهر 1399، صفحه 385-406 اصل مقاله (1.46 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jci.2020.287335.2259 | ||
نویسندگان | ||
جابر خردادی1؛ فرزاد فنودی* 2؛ جعفر مسعود سینکی2؛ شهرام رضوان2؛ علی دماوندی2 | ||
1دانشجوی دکتری، گروه زراعت، دانشگاه آزاد اسلامی، واحد دامغان، دامغان، ایران. | ||
2استادیار، گروه کشاورزی، دانشگاه آزاد اسلامی واحد دامغان، دامغان، ایران. | ||
چکیده | ||
بهمنظور بررسی پاسخهای فیزیولوژیکی دو رقم کنجد به کاربرد نانوکود منیزیم و کیتوزان تحت شرایط رژیمهای آبیاری، آزمایشی بهصورت اسپیلاتپلات فاکتوریل بر مبنای بلوکهای کامل تصادفی با سه تکرار در سال 97-1396 انجام شد. قطع آبیاری بهعنوان فاکتور اصلی (آبیاری نرمال، آبیاری تا 50 درصد گلدهی و دانهبندی)، فاکتورهای فرعی شامل ارقام کنجد اولتان و دشتستان-2، نانو منیزیم (محلولپاشی و عدم محلولپاشی) و کیتوزان (صفر، 8/4 و 4/6 گرم بر لیتر) بودند. بیشترین عملکرد دانه در کاربرد 4/6 گرم در لیتر کیتوزان تحت شرایط آبیاری نرمال با میانگین 1/1235 کیلوگرم در هکتار بود. بیشترین محتوی کلروفیل کل در ژنوتیپ دشتستان-2 تحت شرایط آبیاری نرمال با میانگین 7/24 میلیگرم بر گرم وزن تر بهدست آمد و کمترین میانگین در هر دو ژنوتیپ در آبیاری تا BBCH65 بهترتیب با میانگین 21/17 و 46/17 میلیگرم بر گرم وزن تر مشاهده شد. کاربرد نانوکود در ژنوتیپ اولتان تحت شرایط آبیاری تا BBCH65 منجر به افزایش 11/41 درصدی فعالیت آنزیم کاتالاز در مقایسه با تیمار شاهد گردید. بیشترین فعالیت آسکوربات پراکسیداز در تیمار عدم کاربرد کیتوزان تحت شرایط آبیاری تا BBCH65 بود که افزایش 06/55 درصدی در مقایسه با تیمار شاهد داشت. بهطورکلی، نتایج نشان داد که آبیاری تا BBCH65 منجر به کاهش عملکرد دانه شد که با محلولپاشی نانوکود منیزیم و کیتوزان اثرات منفی ناشی از تنش تعدیل (بهترتیب 93/9 و 46/27 درصد) شد. براساس نتایج تجزیه رگرسیونی چهار صفت، کلروفیل b، کلروفیل کل، پرولین و کاتالاز وارد مدل شدند که در مجموع 11/42 درصد از تغییرات عملکرد دانه را توجیه نمودند. نتایج همبستگی ساده بین صفات و تجزیه رگرسیونی حاکی از اثرات غیرمستقیم صفات فیزیولوژیکی بر عملکرد دانه بودند و از بین پارامترهای مورد بررسی رنگیزههای فتوسنتزی از اهمیت بالایی در شرایط تنش برخوردار بودند. | ||
کلیدواژهها | ||
پرولین؛ تجزیه رگرسیونی؛ دانه روغنی؛ رنگیزههای فتوسنتزی؛ عملکرد دانه؛ فعالیت آنتیاکسیدانی | ||
عنوان مقاله [English] | ||
Physiological Responses of Sesame Cultivars to the Application of Nano Magnesium and Chitosan Biopolymer under Different Irrigation Regimes | ||
نویسندگان [English] | ||
jaber khordadi Varamin1؛ Farzad Fanoodi2؛ jafar masoud sinaki2؛ Shahram rezvan2؛ Ali Damavandi2 | ||
1Ph.D. Candidate, Agronomy Department, Damghan branch, Islamic Azad University, Damghan, Iran. | ||
2Assistant Professor, Agriculture Department, Damghan branch, Islamic Azad University, Damghan, Iran. | ||
چکیده [English] | ||
To investigate the physiological responses of sesame cultivars to the application of nano magnesium and chitosan biopolymer under different irrigation regimes, a split factorial based on randomized complete block design has been conducted with three replicates between 2017 and 2018. The irrigation cut-off, based on BBCH scale, has served as the main factor (normal irrigation, irrigation up to 50% flowering, and seed ripening), with the sub factors including Oltan and Dashtestan-2 sesame cultivars, and nano magnesium (application and non-application) and chitosan (control, 4.8, and 6.4 g.L-1). The highest mean grain yield belongs to the application of 6.4 g.L-1 chitosan under normal irrigation with an average of 1235.1 kg.ha-1. Also, the highest total chlorophyll content is observed in Dashtestan-2 genotype under normal irrigation with a mean of 24.7 mg.g-1 FW and the lowest mean have been obtained in both genotypes under irrigation up to 65 BBCH with a mean of 17.21 and 17.46 mg.g-1 FW, respectively. Application of nano fertilizer in Oltan genotype under irrigation up to 65 BBCH increases the catalase activity by 41.11%, compared to the control treatment. The highest activity of ascorbate peroxidase has been achieved when not applying chitosan under irrigation conditions up to 65 BBCH. It has risen by 55.06%, compared to the control treatment. In general, the results show that irrigation up to 65 BBCH reduces grain yield, in turn alleviated by the negative effects of stress on magnesium and chitosan nanoparticles (9.93% and 27.46%, respectively). Based on the regression analysis results, four traits, namely chlorophyll b, total chlorophyll, proline, and catalase, enter the model that explains 42.11% of the total grain yield variations. Results of simple correlation between traits and regression analysis indicate the indirect effects of physiological traits on grain yield and among the studied parameters, photosynthetic pigments has been of high account in stress conditions. | ||
کلیدواژهها [English] | ||
Antioxidant activity, grain yield, oilseed, photosynthetic pigments, proline, regression analysis | ||
مراجع | ||
Aebi, H. (1984). Catalase in vitro. Methods Enzymol, 105, 121-126. Aghighi Shahverdi, M., Omidi, H., & Mousavi, S. E. (2017). Effect of chitosan on seed germination and biochemical traits of milk thistle (Silybum marianum) seedling under salt stress. Iranian Journal of Seed Research, 3(2), 105-118. (In Persian) Aghighi Shahverdi, M., Omidi, H., & Tabatabaei, S. J. (2019). Stevia (Stevia rebaudiana Bertoni) responses to NaCl stress: Growth, photosynthetic pigments, diterpene glycosides and ion content in root and shoot. Journal of the Saudi Society of Agricultural Sciences, 18(4), 355-360. Alinejad, S., Sarabi, V., Sadeghi Bakhtvari, A. R., & Hashempour, H. (2020). Variation in physiological traits, yield and secondary metabolites of jimsonweed (Datura stramonium L.) under different irrigation regimes and nutrition systems. Industrial Crops and Productions, 143, 1-8. Alaviasl, S. A., Mansourifar, S., Modaressanavi, S. A. M., Asilan, K., Tabatabaei, S. A., & Moradi Ghahridjani, M. (2016). Effect of chitosan and zeolite on growth and yield of sesame (Sesamum indicum L.) under different irrigation conditions in Yazd. Environmental Stresses in Crop Science, 9(2), 163-172. (In Persian). Alban, M. K. A., Spshara, S. E., Hebbar, K. B., Mathias, T. G., & Severin, A. (2015). Potential of antioxidant enzymes in depicting drought tolerance in COCOA (Theobroma cacao L.) genotypes at young Age. African Journal of Science and Research, 4(5), 18-23. Ali, M. B., & El-Sadek, A. N. (2016). Evaluation of drought tolerance indices for wheat (Triticum aestivum L.) under irrigated and rainfed conditions. Communications in Biometry and Crop Science, 11(1), 77-89. Amiri, A., Sirosmehr, A., & Esmaeilzadeh Behabadi, S. (2016). Effect of foliar application of salicylic acid and chitosan on yield of Safflower (Carthamus tinctorius L.). Journal of Plant Researches, 28(4), 712-725. (In Persian). Attibayéba, Nsika-Mikoko, E., Kounkou, N., Sérina, J., Galet, J., Dianga, C., & Mandoukou-Yembi, F. (2010). Description of different growth stages of (Sesamum indicum L.) using the extended BBCH scale. Pakistan Journal of Nutrition, 9(3), 235-239. Bates, L. S., Waldern, R. P., & Teave, I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207. Bistgani, Z. E., Siadat, S. A., Bakhshandeh, A., Pirbalouti, A. G., & Hashemi, M. (2017). Interactive effects of drought stress and chitosan application on physiological characteristics and essential oil yield of thymus daenesis Celak. The Crop Journal, 5(5), 407-415. Blasco, B., Graham, N. S., & Broadley, M. R. (2015). Antioxidant metabolism in Brassica rapa exposed to different external Zn, Ca, and Mg supply. Journal of Plant Physiology, 176, 16-24. Cakmak, I., & Kirkby, E. A., (2008). Role of magnesium in carbon partitioning and alleviating photo oxidative damage. Physiologia Plantarum, 133, 692-704. Ceppi, M. G., Oukarroum, A., Cicek, N., Strasser, R. J., & Schansker, G. (2012). The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. Physiologia Plantarum, 144(3), 277-288. Chakraborty, U., & Pradhan, B. (2012). Oxidative stress in five wheat varieties (Triticum aestivum L.) exposed to water stress and study of their antioxidant enzyme defense system, water stress responsive metabolites and H2O2 accumulation. Brazilian Journal of Plant Physiology, 24(2), 117-130. Chance, B., & Maehly, A. (1955). Assay of catalase and peroxidase. Methods Enzymology, 2, 764-817. Chou, T. S., Chao, Y. Y., Hung, W. D., Hong, Y. C., & Kao, C. H. (2011). Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings. Plant Physiology, 168(10), 1021-1030. Chowdhury, S., Datte, A. K., Saha, A., & Maity, S. (2009). Radiation induced two oil rich mutants in sesame. Indian Journal Science Technology, 2(7), 51-51. Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-Scavengers during environmental stress in plants. Frontiers in Environmental Science, 2, 53. Din, J., Khan, S. U., Ali, I., & Gurmani, A. R. (2011). Physiological and agronomic response of canola varieties to drought stress. Journal of Animal and Plant Sciences, 21(1), 78-82. Djabou, A. S. M., Qin, Y., Thaddee, B., Figueiredo, P. G., Feifei, A., Carvalho, L. J. C. B., Omokolo, D. N., Li, K., Niemenak, N., & Chen, S. (2018). Effects of calcium and magnesium fertilization on antioxidant activities during cassava postharvest physiological deterioration. Crop Science, 57, 1385-1392. Dossa, K., Yehouessi, L. W., Ngue, B. C. L. L., Diof, D., Liao, B., Zhang, X., Cisse, N., Bell, J. M. (2017). Comprehensive screening of some west and central African sesame genotypes for drought resistance probing by agromorphological, physiological, biochemical and seed quality traits. Agronomy, 7(4), 83. Doupis, G., Bertaki, M., Psarras, G., Kasapakis, I., & Chartzoulakis, K. (2013). Water relations, physiological behavior and antioxidant defense mechanism of olive plants subjected to different irrigation regimes. Scientia Horticulturae, 153, 150-156. Hernandez, I., Alegre, L., & Munne-Bosch, S. (2004). Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiology, 24, 1303-1311. Hossain, A., Sarker, M. A. Z., Hakim, M. A., Islam, M. T., & Ali, M. E. (2011). Effect of lime, magnesium and boron on Wheat (Triticum aestivum L.) and their residual effects on Mungbean (Vigna radiate L.). Journal of Agricultural Research Innovation and Technology, 1(1-2), 9-15. Irrigoyen, J. H., Emerich, D. W., & Sanchez Diaz, M. (1992). Water stress induced changes in concentration of proline and total msoluble sugars in nodulated alfalfa (medicago) plants. Physiologia Plantarum, 84, 55-66. Kashyap, P. L., Xiang, X., & Heiden, P. (2015). Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules, 77, 36-51. Kobayashi, N. I., Saito, T., Iwata, N., Ohmae, Y., Iwata, R., Tanoi, K., & Nakanishi, T. M. (2013). Leaf senescence in rice due to magnesium deficiency mediated defect in transpiration rate before sugar accumulation and chlorosis. Journal of Physiologia Plantarum, 148(4), 490-501. Koch, E., Dittmann, E., Lipa, W., Menzel, A., Necovar, J., Van Vlieth, A., & Zach, S. (2007). COST Action 725. Applications: Overview and erste ergebnisse. Proceedings of the Meteorologentagung, DACH 2007 Hamburg, 10-14 September. COST 725, http://top-share.wur.nl/cost725. Liang, X., Zhang, L., Natarajan, S. K., & Becker, D. F. (2013). Proline mechanisms of stress survival. Journal of Antioxidants and Redox Signaling, 19, 998-1011. Lotfi, R., Pessarakli, M., Gharavi-Kouchebagh, P., & Khoshvaghti, H. (2015). Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity. The Crop Journal, 3(5), 434-439. Mahdavi, A., Sinaki, J. M., Amini Dehaghi, M., Rezvan, S., & Damacandi, A. (2018). Effect of nano, chemical, and biological fertilizers on the yield and quality of sesame seeds under different irrigation regimes. Journal of Crops Improvement, 20(1), 263-281. Malik, S., & Ashraf, M. (2012). Exogenous application of ascorbic acid stimulates growth and photosynthesis of wheat (Triticum aestivum L.) under drought. Soil and Environment, 31(1), 72-77. Mondal, M. M., Malek, M. A., Puteh, A. B., Ismail, M. R., & Ashrafuzzaman, M. (2012). Effect of foliar application of chitosan on growth and yield in okra. Australian Journal of Crop Science, 6(5), 918-921. Naderi, M. R., & Abedi, A. (2012). Application of nanotechnology in agriculture and refinement of environmental pollutants. Nanotechnology Journal, 11(1), 18-26. Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascarbate specific peroxidases in spinach Chloroplasts. Plant Cell Physiology, 22, 867-880. Nohong, B., & Nompo, S. (2015). Effcet of water stress on growth, yield, proline and soluble sugars contents of signal grass and Napier grass species. American-Eurasian Journal of Sustainable Agriculture, 9(5), 14-21. Parvaiz, A., & Satyawati, S. (2008). Salt stress and phyto-biochemical of plants. A review. Journal of Plant Soil and Environment, 54(3), 89-99. Pongprayoon, W., Roytrakul, S., Pichyangkura, R., & Chadchawan, S. (2013). The role of hydrogen peroxide in chitosan induced resistance to osmotic stress in rice (Oryza sativa L.). Plant Growth Regulation, 70(2), 159-173. Povero, G., Loreti, E., Pucciariello, C., Santaniello, A., Tommaso, D. D., Tommaso, G. D., Kapetis, D., Zolezzi, F., Piaggesi, A., & Perata, P. (2011). Transcript profile of chitosan-treated Arabidopsis seedling. Journal of Plant Research, 124, 619-629. Roul, B., Mishra, B. K., & Prusty, N. (2017). Natural effect of micronutrient on growth and growth parameter of sesame oilseed crop. Journal of Pharmacognosy and Phytochemistry, 6(5): 1926-1928. Saif Eldeen, U. M., Shokr, M. M. B., & EL Shotoury, R. S. (2014). Effects of foliar spry with seaweeds extract and chitosan on earliness and productivity of globe artichoke. Plant Production, 5(7): 1197-1207. Sakata, Y., Komatsu, K., & Takezawa, D. (2014). ABA as a universal plant Hormone. Progress in Botany, 75, 57-96. Sheikha, S. A. A. K., & AL-Malki, F. M. A. (2011). Growth and chlorophyll response of Bean plants to the chitosan application. European Journal of Scientific Research, 50(1), 124-134. Subramanian, K.S., Manikandan, A., Thirunavukkarasu, M., & Sharmila Rahale, C. (2015). Nano-fertilizers for balanced crop nutrition. Nanotechnologies in Food and Agriculture, 12, 69-80. Sultana, S., Islam, M., Khatun, M. A., Hassain, M. A., & Huque, R. (2017). Effect of foliar application of oligo-chitosan on growth, yield and quality of Tomato and Eggplant. Asian Journal of Agriculture Research, 11(2), 36-42. Sun, J., Gu, J., Zeng, J., Han, S., Song, A., Chen, F., Fang, W., Jiang, J., & Chen, S. (2013). Changes in leaf morphology, antioxidant activity and photosynthesis capacity in two different drought-tolerant cultivars of chrysanthemum during and after water stress. Scientica Horticulturae, 161, 249-258. Taha, R. S. (2016). Magnesium and phosphorien application improve the efficiency of growth and productivity of squash (Cucurbita pepo L.) plants grown on a sandy calcareous soil. Journal of Advanced Botany and Zoology, 4(1), 1-6. Yang, G. H., Yang, L. T., Jiang, H. X., Li, Y., Wang, P., & Chen, L. S. (2012). Physiological impacts of magnesium-deficiency in Citrus seedlings: photosynthesis, antioxidant system and carbohydrates. Trees-Structure and Function, 26(4), 1237-1250. Zarei, A., Masoud Sinaki, J., Amini Dehaghi, M., & Damavandi, A. (2018). Changes in physiological traits and fatty acid composition in Sesame (Sesamum indicum L.) cultivars under various foliar application and drought stress condition. Applied Ecology and Environment Research, 16(5), 6927-6944. Zong, H., Liu, S., Xing, R., Chen, X., & Li, P. (2017). Protective effect of chitosan on photosynthesis and antioxidative defense system in edible rape (Brassica rapa L.) in the presence of cadmium. Ecotoxicology and Environmental Safety, 138, 271-278. | ||
آمار تعداد مشاهده مقاله: 775 تعداد دریافت فایل اصل مقاله: 538 |