![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 162 |
تعداد شمارهها | 6,578 |
تعداد مقالات | 71,072 |
تعداد مشاهده مقاله | 125,696,107 |
تعداد دریافت فایل اصل مقاله | 98,925,462 |
تحلیل تغییرات رفتاری بدنۀ سد لار و مخاطرات آن با استفاده از روش تداخلسنجی راداری و بررسیهای میدانی | ||
مدیریت مخاطرات محیطی | ||
مقاله 2، دوره 7، شماره 4، دی 1399، صفحه 353-366 اصل مقاله (1.36 M) | ||
نوع مقاله: پژوهشی کاربردی | ||
شناسه دیجیتال (DOI): 10.22059/jhsci.2021.314812.615 | ||
نویسنده | ||
مهرنوش قدیمی* | ||
استادیار گروه جغرافیای طبیعی، دانشکدۀ جغرافیا، دانشگاه تهران | ||
چکیده | ||
در طی دهۀ گذشته، شکست فاجعهبار چندین سد در جهان در نتیجۀ عواملی همچون جنبههای ساختاری، ژئوتکنیکی، هیدرولیکی، عملیاتی و محیطی روی داده است. استفاده از روشهای پایش برای جلوگیری از این مخاطره، مقرون به صرفه است؛ همچنین کاربرد روشهایی بهمنظور ارزیابی خطرهای ایجادشده برای جوامع ساکن پاییندست این ساختارها ضرورت دارد. در سالهای اخیر بهعلت در دسترس بودن روش سنجش از دور و کاهش هزینههای آن، استفاده از آن افزایش یافته است. در این پژوهش در محدودۀ سد لار پس از مشاهدۀ نقاط خردشدگی و فرونشست روی سنگچین سد لار که حاصل فرار آب و فرسایش داخلی خاکریز است، از روش تداخلسنجی راداری با استفاده از تصاویر Sentinel-1A در دامنۀ زمانی ۲۰۱۵ تا ۲۰۲۰ بهره گرفته شد. نتایج پردازش نشان داد که جابهجایی سد در جناح چپ بهصورت فرونشست، 8 میلیمتر بوده است، ولی از سال ۲۰۱۸ تا اواخر ۲۰۱۹ این روند تغییر کرده و نقاط نزدیک به تکیهگاه چپ و نزدیک تاج، بالازدگی بدنۀ سد را نشان میدهند. همچنین نتایج این تحقیقات تأکید میکند که پایش مداوم سد لار با استفاده از تصاویر راداری بههمراه مشاهدات میدانی برای جلوگیری از مخاطرات جدی سد ضروری است. | ||
کلیدواژهها | ||
تغییرات رفتاری بدنۀ سد؛ روش تداخلسنجی راداری؛ سد لار؛ Sentinel-1A | ||
عنوان مقاله [English] | ||
Analysis of changes in the structural behaviour of the Lar Dam and its potential risks using radar interferometry and field experiments | ||
نویسندگان [English] | ||
Mehrnoosh Ghadimi | ||
Assistant Professor of Physical Geography Department, University of Tehran, Iran | ||
چکیده [English] | ||
Introduction Dams are defined as installations used to provide water for various use [1]. Dams also contribute to socio-economic developments by not only providing shelter for the downstream regions by suppressing floods, but also forming reservoirs used for various purposes including irrigation, human consumption, and hydropower. These notwithstanding, current trends in the climate change together with improper management of water resources have increased the risks of flood events and drought as global crises. The collateral damage from these events have also been imposed on dam structures [2]. Case Study The case study includes the Lar Dam, located at 85km distance from the North East of Tehran. The area receives an annual precipitation of 600 mm, more than 60% of which is often accumulated as snow. The reservoir is however dry throughout the summer, contributing to only 6% of annual precipitation. Nearly 70% of the total precipitation in the region occurs in winter and spring. The right abutment is located on calcareous formations, while the left abutment is situated on the alluvial sediments and layers of lava originating in the Mount Damavand. The main leakages from the dam have been reported in the karst regions developed on the calcareous formations. Material and methods Data requirements for this study were supplied by acquiring SLC images from the Sentinel-1A sensor the Soyuz satellite of the European Space Agency. The images were taken in 2014 in single polarisation mode (VV) from 28 orbits. Images with similar orbits were initially identified and the 30-meter SRTM digital elevation model was used to process the images. The required DEM files were generated using the GMTSAR software available at (https://topex.ucsd.edu/gmtsar/demgen). The data processing was conducted using interferometric synthetic aperture radar (InSAR) technique. This technique calculates the differences in the phase of waves returning to the sensor to generate an image called the interferogram; which is the differential of phase of two geometrically aligned images taken at two different time StaMPS. Results and discussion Noisy interferograms obtained for a pair of images were eliminated and a time series of interferograms with the least amount of noise and highest pixel count were identified for later processing. The results were indicative of increasing trends in subsidence at certain points in the dam, from 2015 to 2020. The highest amount of vertical change was identified in the form of subsidence in the left abutment area, progressing towards the Delichay River. From 2018, protrusions started to form in the abutment as it started to swell, requiring further investigations in terms of geology of the region and dam behaviour. Based on the results of interferometry, the total subsidence and swelling points were observed in three main areas; the middle of the right abutment where vertical deformations were observed in the form of subsidence at downstream and upstream. The highest amount of subsidence in the area were measured at 20 mm throughout the study period, with a sudden increase in vertical deformation from 2018 onwards. The sudden escalation in deformation in the left abutment and dam body is a major cause for concern about the stability and safety of the dam. The main cause of these deformations was identified as breaches in the calcareous and karstic ducts within the reservoir, causing water to seep under the dam structure. Leakage from the karsts and calcareous ducts cause an increase in water flow, which then causes porewater in the alluvial layers to flow to the calcareous ducts. The alluvial particles then fill up the calcareous pores, reducing the shear strength of soil. As a result, the soil particles are carried away from the embankment by water seeping through the dam, causing internal erosion. The prolongation of erosion together with exploitation of the dam throughout the years have caused further subsidence of the dam structure, increasing the odds of a sudden dam failure and the formation of a sink hole. Further cause for concern is the difference in height of the dam riprap overlay. These conditions of impending failure are similar to those of the Mosul Dam, highlighting the need for constant monitoring of the Lar Dam and use of geological data to develop an alarm system for mitigating the potential impacts of a dam failure and increasing safety. | ||
کلیدواژهها [English] | ||
Changes in structural behaviour of the Lar Dam Sentinel-1A, Lar Dam, InSAR method | ||
مراجع | ||
]1[. گزارش جامع آببندی سد لار (1370)، جلدهای 1 تا 5، مهندسین مشاور لار. ]2[. قدیمی، مهرنوش (۱۳۹۸). «پایش تغییرات بدنۀ سد طالقان به روش تداخلسنجی راداری»، منابع طبیعی، مرتع و آبخیزداری، دورۀ ۷۲، شمارۀ ۳، ص ۸2۹-۸1۹. ]3[. مهندسین مشاور لار (1383). «مطالعات بازنگری کنترل و کاهش فرار آب از سد لار»، 11 جلد. ]4[. مقیمی، ابراهیم(1395) . «چرا دانش مخاطرات (دیدگاهی جدید برای درک مخاطرات)»، مدیریت مخاطرات محیطی، دورۀ 3، شمارۀ 3، ص 197-191. [5]. Al-Ansari, N.; Adamo, N.; Knutsson, S.; Laue, J.; & Sissakian, V. (2020). “Mosoul Dam: Is it the most dangerous Dam in the World?”, Geotechnical and Geological Engineering, 38, pp:5179–5199. [6]. Allenbach, P. (1966). “Geologie und Petrographie des Damavand und seiner Umgebung (Zentral Elburz)”, Iran. Mitteilungen aus dem Geologischen Instiute der Eidgenoessischen Technischen Hochshule und der Universitaet Zurich, Neu Folge, 63, 144. [7]. Bailey, E. B.; Jones, R. C. B.; & Asfia, S. (1948). “Notes on the geology of the Elburz Mountains, north-east of Tehran, Iran”, The quarterly Journal of the Geological Society of London, 413, 1-42. [8]. Deere, D.U.; & Deere, D.W. (1989). “Rock quality designation (RQD) after twenty years contract Report GL-89-1. U. S. Army Engineer Water ways Experiment station, Vicksburg, MS. [9]. Di Pasquale, A. (2018). “Monitoring Strategies of Earth Dams by Ground-Based Radar Interferometry: How to Extract Useful Information for Seismic Risk Assessment”, Sensors, v. 18, pp: 1-25. [10]. Farova, K.; Jelenek, J.; Kopackova-Strnadova, V.; & Kycl, P. (2019). “Comparing DInSAR and PSI Techniques Employed to Sentinel-1 Data to Monitor Highway Stability: A Case Study of a Massive Dobkovicky Landslide, Czech Republic”, Remote Sensing, v. 11, p: 1-23. [12]. Hanssen, RF. (2001). “Radar interferometry: data interpretation and error analysis”, Springer Science & Business Media. [13]. Herrera, G.; Tomás, R.; Lopez-Sanchez, J.M.; Delgado, J.; Mallorqui, J.J.; Duque, S.; & Mulas, J. (2007). “Advanced DInSAR analysis on mining areas: La Union case study (Murcia, SE Spain)”, Engineering Geology. 90 (3–4): 148–159. [14]. Hooper, A.; Segall, P.; & Zebker, H. (2007). “Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis”, J Geophys Res. 112, pp:1-21. [15]. Kelly, J.; Wakeley, L.D.; Broadfoot, S.W.; Pearson, M.L.; McGill, T.E.; Jorgeson, J.D.; Talbot, C.A.; & McGrath, C.J. (2007). Geologic setting of Mosul Dam and its engineering implications, final report, U.S. Army Engineer District, Gulf Region, Baghdad, Iraq. [16]. Lanari, R.; Mora, O.; Manunta, M.; Mallorquí, J.J.; Berardino, P.; Sansosti. E. (2004). “A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms”, IEEE Transactions on Geoscience and Remote Sensing, 42, pp:1377-1386. [17]. Lar Dam and Mazandaran irrigation project- final report. (1972). Volume 1 to 4, March, Sir Alexander Gibb. [18]. Lar Dam rehabilation studies. (1994). “Stage I- evaluation and identification”, Volume 1 to 7, March, SETEC consultant engineers. [19]. Mani, P.; Kumar, R.; & Patara. J. P. (2020) “Dam break flood hazard assessment: A case study for a small dam at source stream of river Ganga in Uttarakhand”, India. Roorkee WaterConclave. [21]. Raucoules, D.; Maisons, C.; Carnec, C.; Le, Mouelic, S.; King, C.; & Hosford, S. (2003). “Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert salt mine (France): Comparison with ground-based measurement”, Remote sensing of environment. 88, pp: 468-478. [22]. Riccardi, P.;Tessari, G.; Lecci, D.; Floris, M.; & Pasquali. (2017). “Use of Sentinel-1 SAR data to monitor Mosul dam vulnerability”, 19th EGU General Assembly. In: EGU GENERAL ASSEMBLY, 19, pp: 23-28, Vienna. [23]. Stematiu, D. (2006) Dam engineering, Bucureresti Conspress. [24]. Zhou, W.; Li, S.; Zhou, Z.; & Chang, X. (2016). “Remote Sensing of Deformation of a High Concrete-Faced Rockfill Dam Using InSAR: A Study of the Shuibuya Dam”, China. Remote Sensing, v. 8, n. 255, p. 1-15. [25]. Yang, J.; & Wu, Z. (2002). “Present conditions and development of dam safety monitoring and control researches home and abroad (in Chinese)”, J Xi’an Univ Technol, 18, pp: 26–30. | ||
آمار تعداد مشاهده مقاله: 384 تعداد دریافت فایل اصل مقاله: 405 |