تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,089,750 |
تعداد دریافت فایل اصل مقاله | 97,193,076 |
Prediction of Shear Strength of Reinforced Concrete Deep Beams Using Neuro-Fuzzy Inference System and Meta-Heuristic Algorithms | ||
Civil Engineering Infrastructures Journal | ||
دوره 56، شماره 1، شهریور 2023، صفحه 137-157 اصل مقاله (1.35 M) | ||
نوع مقاله: Research Papers | ||
شناسه دیجیتال (DOI): 10.22059/ceij.2022.334953.1803 | ||
نویسندگان | ||
Mohammad Reza Mohammadizadeh* 1؛ Farnaz Esfandnia2؛ Mohsen Khatibinia3 | ||
1Associate Professor, Department of Civil Engineering, University of Hormozgan, Bandar Abbas, Iran. | ||
2Ph.D. Student, Department of Civil Engineering, University of Hormozgan, Bandar Abbas, Iran. | ||
3Associate Professor, Department of Civil Engineering, University of Birjand, Birjand, Iran. | ||
چکیده | ||
It is generally accepted that the shear strength of Reinforced Concrete (RC) deep beams depends on the mechanical and geometrical parameters of the beam. The accurate estimation of shear strength is a substantial problem in engineering design. However, the prediction of shear strength in this type of beams is not very accurate. One of the relatively accurate methods for estimating shear strength of beams is Artificial Intelligence (AI) methods. Adaptive Neuro-Fuzzy Inference System (ANFIS) was presented as an AI method. In this study, the efficiency of ANFIS incorporating meta-heuristic algorithms for predicting shear strength of RC beams was investigated. Meta-heuristic algorithms were used to determine the optimum parameters of ANFIS for providing the efficient models of the prediction of the RC beam shear strength. To evaluate the accuracy of the proposed method, its results were compared with those of other methods. For this purpose, the parameters of concrete compressive strength, cross-section width, effective depth, beam length, shear span-to-depth beam ratio (a/d), as well as percentage of longitudinal and transverse reinforcement were selected as input data, and the shear strength of reinforced concrete deep beam as the output data. Here, K-fold validation method with k = 10 was used to train and test the algorithms. The results showed that the proposed model with second root mean square error of 25.968 and correlation coefficient of 0.914 is more accurate than other methods. Therefore, neural fuzzy inference system with meta-heuristic algorithms can be adopted as an efficient tool in the prediction of the shear strength of deep beams. | ||
کلیدواژهها | ||
Meta-Heuristic Algorithms؛ Neuro-Fuzzy Inference System؛ Reinforced Concrete Deep Beam؛ Shear Strength | ||
مراجع | ||
ACI. (2011). Building code requirements for structural concrete (ACI 318-11), American Concrete Institute.
Armaghani, D.J. and Asteris, P.G. (2021). "A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength", Neural Computing and Applications, 33(9), 4501-4532, https://doi.org/10.1007s00521-020-05244-4.
Baghban, A., Karamodin, A., and Haji Kazemi, H. (2020). "Fault-tolerant damage control of nonlinear structures using artificial intelligence", Civil Engineering Infrastructures Journal, 53(2), 395-406, https://doi.org/10.22059/CEIJ.2020.287804.1609.
Bezdek, J.C. (1981). Pattern recognition with fuzzy objective function algorithms, Plenum Press, New York, https://doi.org/10.1007/978-1-4757-0450-1.
CSA. (1994). Building code, design of concrete structures: Structures (Design)-A National Standard of Canada (CAN-A23. 3-94), Clause 11.1. 2, Canadian Standards Association, Toronto.
Gholamzadeh Chitgar, A. and Berenjian, J. (2021), "Performance evaluation of RBF networks with various variables to forecast the properties of SCCs", Civil Engineering Infrastructures Journal, 54(1), 59-73, https://doi.org/10.22059/CEIJ.2020.288257.1611.
Chiu, S. (1997). "Fuzzy model identification based on cluster estimation", Journal of Intelligent and Fuzzy Systems, 2(3), 267-278, https://doi.org/10.3233/ifs-1994-2306.
Chou, J.S., Chiu, C.K., Farfoura, M. and Al-Taharwa, I. (2011). "Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques", Journal of Computing in Civil Engineering, 25(3), 242-253, https://doi.org/10.1061/(ASCE)CP.1943-5487.0000088.
Dao, D.V., Ly, H.B., Trinh, S.H., Le, T.T. and Pham, B.T. (2019). "Artificial intelligence approaches for prediction of compressive strength of geopolymer concrete", Materials, 12(6), 983, https://doi.org/10.3390/ma12060983.
Deb, K. (2011). "Multi-objective optimisation using evolutionary algorithms: an introduction", In: Wang, L., Ng, A., Deb, K. (eds), Multi-Objective Evolutionary Optimisation for Product Design and Manufacturing, pp. 3-34, Springer: London.
Gandomi, A.H., Yun, G.J. and Alavi, A.H. (2013). "An evolutionary approach for modeling of shear strength of RC deep beams", Materials and Structures, 46(12), 2109-2119, https://doi.org/10.1007/978-0-85729-652-8_1.
Gen, M. and Cheng, R. (2000). Genetic algorithms and engineering optimization, John Wiley & Sons, Inc., USA, https://doi.org/10.1002/9780470172261.
Jang, J.S. (1993). "ANFIS: adaptive-network-based fuzzy inference system", IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685, https://doi.org/10.1109/21.256541.
Jang, J.S.R., Sun, C.T. and Mizulani, E. (1996). Neuro–fuzzy and soft computing: a computational approach to learning and machine intelligence, Prentice-Hall, https://doi.org/10.1109/tac.1997.633847.
Kaveh, A., Hamze-Ziabari, S.M. and Bakhshpoori, T. (2017). "M5’algorithm for shear strength prediction of hsc slender beams without web reinforcement", International Journal of Modeling and Optimization, 7(1), 48-53, https://doi.org/10.24200/sci.2017.4509.
Kennedy, J., Eberhart, R.C., and Shi, Y. (2001). Swarm intelligence, Morgan Kaufmann Publishers, San Francisco, https://doi.org/10.1007/s00897020553a.
Keshavarz, Z. and Torkian, H. (2018). "Application of ANN and ANFIS models in determining compressive strength of concrete", Journal of Soft Computing in Civil Engineering, 2(1), 62-70, https://doi.org/10.22115/SCCE.2018.51114.
Khatibinia, M. and Mohammadizadeh, M.R. (2017). "Intelligent fuzzy inference system approach for modeling of debonding strength in FRP retrofitted masonry elements", Structural Engineering and Mechanics, 6(2), 283-293, https://doi.org/10.12989/sem.2017.61.2.283.
Khoshbin, F., Bonakdari, H., Ashraf Talesh, S.H., Ebtehaj, I., Zaji, A.H. and Azimi, H. (2016). "Adaptive neuro-fuzzy inference system multi-objective optimization using the genetic algorithm/singular value decomposition method for modelling the discharge coefficient in rectangular sharp-crested side weirs", Engineering Optimization, 48(6), 933-948, https://doi.org/10.1080/0305215x.2015.1071807.
Kong, F.K., Robins, P.J. and Cole, D.F. (1970). "Web reinforcement effects on deep beams", Journal Proceedings, 67(12), 1010-1018, https://doi.org/10.14359/7336.
Lin, J.C.W., Yang, L., Fournier-Viger, P., Hong, T.P. and Voznak, M. (2017). "A binary PSO approach to mine high-utility itemsets", Soft Computing, 21(17), 5103-5121, https://doi.org/10.1007/s00500-016-2106-1.
Liu, J. and Mihaylov, B.I. (2016). "A comparative study of models for shear strength of reinforced concrete deep beams", Engineering Structures, 112, 81-89, https://doi.org/10.1016/j.engstruct.2016.01.012.
Moosazadeh, S., Namazi, E., Aghababaei, H., Marto, A., Mohamad, H. and Hajihassani, M. (2019). "Prediction of building damage induced by tunnelling through an optimized artificial neural network", Engineering with Computers, 35(2), 579-591, https://doi.org/10.1007/s00366-018-0615-5.
Naderpour, H. and Mirrashid, M. (2020). "Shear strength prediction of RC beams using adaptive neuro-fuzzy inference system", Scientia Iranica, 27(2), 657-670, https://doi.org/10.24200/sci.2018.50308.1624.
Nguyen, T.A., Ly, H.B., Mai, H.V.T., and Tran, V.Q. (2021). "On the training algorithms for artificial neural network in predicting the shear strength of deep beams", Complexity, 3(1), 1-18, https://doi.org/10.1155/2021/5548988.
Pal, M. and Deswal, S. (2011). "Support vector regression based shear strength modelling of deep beams", Computers and Structures, 89(13-14), 1430-1439, https://doi.org/10.1016/j.compstruc.2011.03.005.
Prayogo, D., Cheng, M.Y., Wu, Y.W. and Tran, D.H. (2020). "Combining machine learning models via adaptive ensemble weighting for prediction of shear capacity of reinforced-concrete deep beams", Engineering with Computers, 36(3), 1135-1153, https://doi.org/10.1007/s00366-019-00753-w.
Savrun, M.M. and İnci, M. (2021). "Adaptive neuro-fuzzy inference system combined with genetic algorithm to improve power extraction capability in fuel cell applications", Journal of Cleaner Production, 299(25 May), 126944, https://doi.org/10.1016/j.jclepro.2021.126944.
Shariati, M., Mafipour, M. S., Mehrabi, P., Shariati, A., Toghroli, A., Trung, N.T. and Salih, M.N.A. (2021). "A novel approach to predict shear strength of tilted angle connectors using artificial intelligence techniques", Engineering with Computers, 37(3), 2089-2109, https://doi.org/10.1007/s00366-019-00930-x.
Shi, Y., Liu, H., Gao, L. and Zhang, G. (2011). "Cellular particle swarm optimization", Information Sciences, 181(20), 4460-4493, https://doi.org/10.1016/j.ins.2010.05.025.
Sihag, P., Tiwari, N.K. and Ranjan, S. (2019). "Prediction of unsaturated hydraulic conductivity using adaptive neuro-fuzzy inference system (ANFIS)", ISH Journal of Hydraulic Engineering, 25(2), 132-142, https://doi.org/10.1080/09715010.2017.1381861.
Smith, K.N. and Vantsiotis, A.S. (1982). "Shear strength of deep beams", Journal Proceedings, 79(3), 201-213, https://doi.org/10.14359/10899.
Socha, K. and Dorigo, M. (2008). "Ant colony optimization for continuous domains", European Journal of Operational Research, 185(3), 1155-1173, https://doi.org/10.1016/j.ejor.2006.06.046.
Storn, R. and Price, K. (1997). "Differential evolution, A simple and efficient heuristic for global optimization over continuous spaces", Journal of Global Optimization, 11(4), 341-359, https://doi.org/10.1023/a:1008202821328.
Subbaraj, P., Rengaraj, R. and Salivahanan, S. (2011). "Enhancement of self-adaptive real-coded genetic algorithm using Taguchi method for economic dispatch problem", Applied Soft Computing, 11(1), 83-92, https://doi.org/10.1016/j.asoc.2009.10.019.
Suguna, K., Raghunath, P.N., Karthick, J. and Uma Maheswari, R. (2018). "ANN based modeling for high strength concrete beams with surface mounted FRP laminates", International Journal of Optimization in Civil Engineering, 8(3), 453-467, http://ijoce.iust.ac.ir/article-1-355-en.htm.
Tan, K.H., Kong, F.K., Teng, S. and Guan, L. (1995). "High-strength concrete deep beams with effective span and shear span variations", Structural Journal, 92(4), 395-405, https://doi.org/10.14359/991.
Taghi Dastorani, M., Mahjoobi, J., Talebi, A. and Fakhar, F. (2018). "Application of machine learning approaches in rainfall-runoff modeling (Case Study: Zayandeh_Rood Basin in Iran)", Civil Engineering Infrastructures Journal, 51(2), 293-310, https://doi.org/10.7508/CEIJ.2018.02.004.
Toghroli, A., Mohammadhassani, M., Suhatril, M., Shariati, M. and Ibrahim, Z. (2014). "Prediction of shear capacity of channel shear connectors using the ANFIS model", Steel and Composite Structures, 17(5), 623-639, https://doi.org/10.12989/scs.2014.17.5.623.
Zhang, C. (2020). "Classification rule mining algorithm combining intuitionistic fuzzy rough sets and genetic algorithm", International Journal of Fuzzy Systems, 22, 1694-1715, https://doi.org/10.1007/s40815-020-00849-2.
Zhou, Q., Zhu, F., Yang, X., Wang, F., Chi, B. and Zhang, Z. (2017). "Shear capacity estimation of fully grouted reinforced concrete masonry walls using neural network and adaptive neuro-fuzzy inference system models", Construction and Building Materials, 153, 937-947, https://doi.org/10.1016/j.conbuildmat.2017.07.171. | ||
آمار تعداد مشاهده مقاله: 508 تعداد دریافت فایل اصل مقاله: 819 |