تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,119,510 |
تعداد دریافت فایل اصل مقاله | 97,225,909 |
برهمکنش سینرژیستی قارچ Beauveria bassiana و دو فرمولاسیون تجاری خاک دیاتومه روی لمبه گندم، Trogoderma granarium (Coleoptera: Dermestidae) | ||
کنترل بیولوژیک آفات و بیماری های گیاهی | ||
دوره 10، شماره 1، خرداد 1400، صفحه 63-76 اصل مقاله (901.36 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jbioc.2022.337512.316 | ||
نویسندگان | ||
افسانه شهبازی1؛ مرضیه علیزاده* 2؛ حمیدرضا پوریان2 | ||
1دانش آموخته کارشناسی ارشد گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران | ||
2استادیار گروه گیاهپزشکی، دانشکده کشاورزی ، دانشگاه رازی، کرمانشاه، ایران | ||
چکیده | ||
عوامل حفاظت زیستی شامل عوامل زنده بیوکنترل و مواد غیرزنده با پایه طبیعی نظیر خاک دیاتومه، در کنترل آفات انباری، نقش مهمی را بهلحاظ حفظ سلامت غذایی ایفا میکنند. مشکل کاربرد خاکهای دیاتومه در انبار این است که دوز توصیه شده آنها سبب افزایش تودهای شدن و کاهش جریانپذیری بذرها میشود. بنابراین پژوهش حاضر با هدف تعیین سازگاری زیستی بین دو فرمولاسیون تجاری خاک دیاتومه ایرانی Sayan و خارجی Celite 610 با جدایه بومی قارچ بیمارگر حشرات، Beauveria bassiana DE (Hypocreales) و نیز رفع مشکل کاهش جریانپذیری بذرها با استفاده از دوز کمکشنده خاک دیاتومه در مخلوط انجام شد. بهاین منظور، ابتدا آزمونهای زیستسنجی 14 روزه به-روش آغشته کردن بذور گندم بهطور جداگانه با قارچ و دو خاک دیاتومه علیه حشرات بالغ لمبه گندم،Trogoderma granarium Everts ، انجام شد. سپس بهمنظور تعیین برهمکنش، پنج دوز از قارچB. bassiana با LD25 هر یک از خاکهای دیاتومه مخلوط شدند. طبق نتایج مقادیر LD50 برای قارچ، سایان® و سلایت 610® بهترتیب، 3/295، 5/4439 و 3/992 پیپیام محاسبه شدند. بر اساس آزمون نسبت دوزهای کشنده مشخص شد که قدرت کشندگی سلایت 610®، 47/4 برابر سایان® است. همچنین برهمکنش در تمام مخلوطهای حاصل از قارچ و دوز کمکشنده هر یک از خاکهای دیاتومه، سینرژیستی بود بهجز بالاترین دوز که از نوع افزایشی تخمین زده شد. همچنین کلیه دوزهای اختلاط بر کاهش تولید نتاج، طی دوره ذخیره سازی هشت هفتهای موثر واقع شدند که بیانگر سازگاری این دو عامل برای کاربرد همزمان در برنامههای مدیریت تلفیقی T. granarium میباشد. | ||
کلیدواژهها | ||
اختلاط؛ قارچهای بیمارگر حشرات؛ سایان®؛ سلایت 610®؛ بیوکنترل | ||
عنوان مقاله [English] | ||
Synergistic interaction of Beauveria bassiana and two commercial formulations of diatomaceous earth on Trogoderma granarium (Coleoptera: Dermestidae) | ||
نویسندگان [English] | ||
Afsaneh Shabazi1؛ Marzieh Alizadeh2؛ Hamid-Reza Pourian2 | ||
1Former M.SC. Student, Department of Plant Protection, Faculty of Agriculture, Razi University, Kermanshah, Iran. | ||
2Assistant Professor, Department of Plant Protection, Faculty of Agriculture, Razi University, Kermanshah, Iran | ||
چکیده [English] | ||
Bioprotection agents, including living biocontrol agents and naturally occurring non-living substances such as diatomaceous earth, play a crucial role in controlling stored commodity pests to maintain food health. The problem with using diatomaceous earth in storage is that their recommended dose increases grains' bulk density and decreases flowability. Therefore, the present study aimed to determine the biocompatibility between two commercial formulations of Iranian diatomaceous earth, Sayan, and foreign Celite 610 with the indigenous entomopathogenic fungus isolate, Beauveria bassiana DE (Hypocreales), and to solve the problem of reducing grains' flowability using a low-lethal dose of diatomaceous earth in the mixture. For this purpose, 14-day bioassays were first performed by impregnating wheat seeds separately with the fungus and two diatomaceous earths against adults of Khapra beetle, Trogoderma granarium Everts. Then, to determine the interaction effects, five different doses of B. bassiana were mixed with LD25 of each diatomaceous earth. Based on the results, LD50 values for fungus, Sayan®, and Celite 610® were calculated at 295.3, 4439.5, and 992.3 ppm, respectively. According to the lethal dose ratio test, the insecticidal activity of Celite 610® was estimated to be 4.47 times more than Sayan®. Moreover, the interaction was synergistic in all mixtures of B. bassiana with the low-lethal dose of each diatomaceous earth except for the highest dose of the fungus, which was estimated additive. In addition, all mixtures effectively reduced progeny production during the eight-week storage period, indicating the compatibility of these two agents for co-application in the integrated T. granarium management programs. | ||
کلیدواژهها [English] | ||
combination, entomopathogenic fungi, Sayan®, Celite 610®, biocontrol | ||
مراجع | ||
Akbar, W., J. C. Lord, J. R. Nechols, and R. W. Howard. 2004. Diatomaceous earth increases the efficacy of Beauveria bassiana against Tribolium castaneum larvae and increases conidia attachment. J. Econ. Entomol. 97: 273–280.
Aldryhim, Y. 1990. Efficacy of the amorphous silica dust , and Sitophilus Granarius (L.) (Coleoptera: Tenebrionidae and Curculionidae ). J. Stored Prod. Res. 26: 207–210.
Arnaud, L., H. T. T. Lan, Y. Brostaux, and E. Haubruge. 2005. Efficacy of diatomaceous earth formulations admixed with grain against populations of Tribolium castaneum. J. Stored Prod. Res. 41: 121–130.
Athanassiou, C. G. A., N. G. K. Avallieratos, A. C. Hiriloaie, and T. N. V Assilakos. 2016. Insecticidal efficacy of natural diatomaceous earth deposits from Greece and Romania against four stored grain beetles: the effect of temperature and relative humidity. Bull. Insectology. 69: 25–34.
Athanassiou, C. G., M. M. Hasan, T. W. Phillips, M. J. Aikins, and J. E. Throne. 2015. Efficacy of methyl bromide for control of different life stages of stored-product psocids. J. Econ. Entomol. 108: 1422–1428.
Athanassiou, C. G., N. G. Kavallieratos, C. B. Dimizas, B. J. Vayias, and Ž. Tomanović. 2006. Factors affecting the insecticidal efficacy of the diatomaceous earth formulation SilicoSec® against adults of the rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Appl. Entomol. Zool. 41: 201–207.
Awais, M., M. Zeeshan, M. Sagheer, M. U. Asif, and Q. Ali. 2020. Combined effect of diatomaceous earth and insect growth regulators against Trogoderma granarium (Coleoptera: Dermestidae). Sci. Lett. 8: 55–60.
Bagheri-Zenouz, A. 2013. Pest of stored products and management to maintain, Biology of insects, Acari and microorganisms. 4, editor, Tehran Univ. Tehran Press. Persian 2013].
Batta, YA, and N. G. Kavallieratos. 2018. The use of entomopathogenic fungi for the control of stored-grain insects. Int. J. Pest Manag. 64: 77–87.
Batta, YA, N. G. Kavallieratos, Y. A. Batta, and N. G. Kavallieratos. 2018. The use of entomopathogenic fungi for the control of stored-grain insects. Int. J. Pest Manag. 64: 77–87.
Benhalima, H., M. Q. Chaudhry, K. A. Mills, and N. R. Price. 2004. Phosphine resistance in stored-product insects collected from various grain storage facilities in Morocco. J. Stored Prod. Res. 40: 241–249.
Borzoui, E., B. Naseri, and F. Rahimi Namin. 2015. Different diets affecting biology and digestive physiology of the Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae). J. Stored Prod. Res. 62: 1–7.
Cherry, A. J., P. Abalo, and K. Hell. 2005. A laboratory assessment of the potential of different strains of the entomopathogenic fungi Beauveria bassiana (Balsamo) Vuillemin and Metarhizium anisopliae (Metschnikoff) to control Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) in stored cowpea. J. Stored Prod. Res. 41: 295–309.
Eppo. 2013. European and Mediterranean Plant Protection Organization. PM 7/13 (2) Trogoderma granarium. EPPO Bull.
Feofilova, E. P., A. A. Ivashechkin, A. I. Alekhin, and Y. E. Sergeeva. 2012. Fungal spores: Dormancy, germination, chemical composition, and role in biotechnology (review). Appl. Biochem. Microbiol. 48: 1–11.
Goettel, M. S., G. D. Inglis, and S. P. Wraight. 2000. Fungi, pp. 255–282. In Kaya, H.K., Lacey, L.A. (eds.), F. Man. Invertebr. Pathol. Kluwer Academic Publishers, The Netherlands.
Gourgouta, M., P. Agrafioti, and C. G. Athanassiou. 2020. Insecticidal Effect of Phosphine for the Control of Different Life Stages of the Khapra Beetle, Trogoderma granarium (Coleoptera: Dermestidae). Crop Prot. 105409.
Kavallieratos, N. G., C. G. Athanassiou, M. C. Boukouvala, and G. T. Tsekos. 2019. Influence of different non-grain commodities on the population growth of Trogoderma granarium Everts (Coleoptera: Dermestidae). J. Stored Prod. Res. 81: 31–39.
Kavallieratos, N. G., C. G. Athanassiou, Z. Korunic, and N. H. Mikeli. 2015. Evaluation of three novel diatomaceous earths against three stored-grain beetle species on wheat and maize. Crop Prot. 75: 132–138.
Khoobdel, M., H. R. Pourian, and M. Alizadeh. 2019. Bio-efficacy of the indigenous entomopathogenic fungus, Beauveria bassiana in conjunction with desiccant dust to control of coleopteran stored product pests. J. Invertebr. Pathol. 168: 107254.
Korunić, Z. 2013. Diatomaceous earths: Natural insecticides. Pestic. i fitomedicina. 28: 77–95.
Korunic, Z., S. Cenkowski, and P. Fields. 1998. Grain bulk density as affected by diatomaceous earth and application method. Postharvest Biol. Technol. 13: 81–89.
Korunić, Z., A. Liška, P. Lucić, D. Hamel, and V. Rozman. 2020. Evaluation of diatomaceous earth formulations enhanced with natural products against stored product insects. J. Stored Prod. Res. 86.
Lord, J. C. 2001. Desiccant dusts synergize the effect of Beauveria bassiana (Hyphomycetes: Moniliales) on stored-grain beetles. J. Econ. Entomol. 94: 367–72.
Lord, J. C. 2007. Desiccation increases the efficacy of Beauveria bassiana for stored-grain pest insect control. J. Stored Prod. Res. 43: 535–539.
Lu, H.-L., and R. J. S. Leger. 2016. Insect immunity to entomopathogenic fungi, pp. 251–285. In Adv. Genet. Elsevier.
McGrath, M. T. 2013. Ways of overcoming insecticide resistance: use of mixtures and rotations of insecticides. A Biannu. Newsl. Cent. Integr. Plant Syst. Coop. with Insectic. Resist. Action Comm. West. Reg. Coord. Comm. 22: 10.
Meyling, N. V., and J. Eilenberg. 2007. Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: Potential for conservation biological control. Biol. Control. 43: 145–155.
Ortiz-Urquiza, A., and N. O. Keyhani. 2013. Action on the surface: Entomopathogenic fungi versus the insect cuticle. Insects. 4: 357–374.
Ozdemir, I. O., C. Tuncer, I. Erper, and R. Kushiyev. 2020. Efficacy of the entomopathogenic fungi; Beauveria bassiana and Metarhizium anisopliae against the cowpea weevil, Callosobruchus maculatus F.(Coleoptera: Chrysomelidae: Bruchinae). Egypt. J. Biol. Pest Control. 30: 1–5.
Pedrini, N., A. Ortiz-Urquiza, S. Zhang, and N. O. Keyhani. 2013. Targeting of insect epicuticular lipids by the entomopathogenic fungus Beauveria bassiana: hydrocarbon oxidation within the context of a host-pathogen interaction. Front. Microbiol. 4: 24.
Pourian, H. R., M. Khoobdel, and M. Alizadeh. 2019. Stored-grains pests and their control with emphasis on military food warehouses in Iran: A review. J. Mil. Med. 21: 313–324.
Prasantha, B. D. R., C. Reichmuth, C. Adler, and D. Felgentreu. 2015. Lipid adsorption of diatomaceous earths and increased water permeability in the epicuticle layer of the cowpea weevil Callosobruchus maculatus (F.) and the bean weevil Acanthoscelides obtectus (Say) (Chrysomelidae). J. Stored Prod. Res. 64: 36–41.
Püntener, W. 1981. Manual for field trials in plant protection. Ciba-Geigy.
Robertson, J. L., and H. K. Preisler. 1992. Pesticide bioassays with arthropods. CRC Press.
Rumbos, C. I., and C. G. Athanassiou. 2017. Use of entomopathogenic fungi for the control of stored-product insects: can fungi protect durable commodities? J. Pest Sci. (2004). 90: 839–854.
Searle, T., and J. Doberski. 1984. An investigation of the entomogenous fungus Beauveria bassiana (Bals.) Vuill. as a potential biological control agent for Oryzaephilus surinamensis (L.). J. Stored Prod. Res. 20: 17–23.
Shams, G., M. H. Safaralizadeh, and S. Imani. 2011. Insecticidal effect of diatomaceous earth against Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) and Sitophilus granarius (L.) (Coleoptera: Curculionidae) under laboratory conditions. African J. Microbiol. Res. 5: 3574–3578.
Software, L. 2018. Poloplus, a user’s guide to probit or logit analysis. LeOra Software, Berkeley, CA.
Talebi jahromi, K. 2007. Pesticides toxicology. University of Tehran press.
Uma Devi, K., J. Padmavathi, C. Uma Maheswara Rao, A. A. P. Khan, and M. C. Mohan. 2008. A study of host specificity in the entomopathogenic fungus Beauveria bassiana (Hypocreales, Clavicipitaceae). Biocontrol Sci. Technol. 18: 975–989.
Vayias, B. J., and V. K. Stephou. 2009. Factors affecting the insecticidal efficacy of an enhanced diatomaceous earth formulation against three stored-product insect species. J. Stored Prod. Res. 45: 226–231.
| ||
آمار تعداد مشاهده مقاله: 346 تعداد دریافت فایل اصل مقاله: 349 |