تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,091,059 |
تعداد دریافت فایل اصل مقاله | 97,194,999 |
Comparison of IAQ Standards in Healthcare Facilities with the aim of providing acceptable Standards in Iran | ||
Pollution | ||
دوره 9، شماره 1، فروردین 2023، صفحه 344-367 اصل مقاله (695.03 K) | ||
نوع مقاله: Review Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2022.342503.1463 | ||
نویسندگان | ||
Forough Farhadi1؛ Mehdi Khakzand* 1؛ MohammadAli Khanmohammadi1؛ Zahra Barzegar2 | ||
1School of Architecture and Urban Design, Iran University of Science and Technology, Tehran, Iran | ||
2Department of Art and Architecture, Islamic Azad University, P.O.Box 1-71993, Shiraz, Iran | ||
چکیده | ||
Indoor air quality (IAQ) is a significant concern that affects comfort and health. It is well understood that hospitals are thermal environments in which comfort must be calibrated. This comparative study examined existing international standards of IAQ in Iranian health care facilities. A systematic review of studies on IAQ standards was conducted to test the hypothesis regarding which parameters, and at what level, can have an impact on hospital IAQ: EPA, ASHRAE, LEED, BREEAM, NIOSH, OSHA, WHO, ACGIH, Canadian, and OEL. The inclusion criteria were met by 34 of the 1886 studies that were screened from 2010-2021. The findings of the selected studies were classified into four categories for analysis: monitoring of IAQ according to standards (n=34), IAQ in healthcare facilities (n=1), impact of air pollution on human health (n=9), and interventions to improve IAQ (n=1). Based on these IAQ standards, the acceptable limit for CO2 6300 *10³ µg/m³, for CO 9000 µg/m³, for Formaldehyde 19 µg/m³, for NO2 37 µg/m³, for O3 98 µg/m³, for PM2.5 0.1 µg/m³, for PM10 10 µg/m, and for SO2 31 µg/m³ was suggested. The majority of studies conducted monitoring of pollutants in indoor environments used for homes and schools, with the majority of them relying on WHO IAQ standards. CO, PM, and NO2 concentrations have been the most studied and have the longest track record of research. The acceptable limit for IAQ parameters was proposed. | ||
کلیدواژهها | ||
IAQ؛ IAQ standards؛ IAQ parameters؛ healthcare facilities | ||
مراجع | ||
NIOSH (The National Institude for Occupational Saftey and Health), N. I. for O. S. and H. (1992). Recommendations for Occupational Safety and Health. Compendium of policy documents and statements. DHHS (NIOSH) Publication No. 92-100. (OEL), P. O. E. L. (n.d.). Requirements, Instructions and Specialized Guidelines for Environmental and Occupational Health Center (pp. 2–217). , Environmental and Occupational Health Center , Environmental Research Institute , Tehran University of Medical Sciences. Abdel-Salam, M. M. M. (2015). Investigation of PM2.5 and carbon dioxide levels in urban homes. J. Air Waste Manag. Assoc. (1995), 65(8), 930–936. Abdel-Salam, M. M. M. (2021). Outdoor and indoor factors influencing particulate matter and carbon dioxide levels in naturally ventilated urban homes. J. Air Waste Manag. Assoc. (1995), 71(1), 60–69. ACGIH (American Conference of Governmental Industrial Hygienists) (2021). Retrived July 30th, 2021, from https://www.osha.gov/sites/default/files/2018-12/fy11_sh-22318-11_GlossaryofTerms.pdf Adinyira, E., Oteng, S. and Adjei-Kumi, T. (2007). International Conference on Whole Life Urban Sustainability and its Assessment A Review of Urban Sustainability Assessment Methodologies. Afra, A., Mollaei Pardeh, M., Saki, H., Farhadi, M., Geravandi, S., Mehrabi, P., Dobaradaran, S., Momtazan, M., Dehkordi, Z. and Mohammadi, M. J. (2020). Anesthetic toxic isoflurane and health risk assessment in the operation room in Abadan, Iran during 2018. Clin. Epidemiol. Glob. Heal., 8(1), 251–256. Agarwal, N., Meena, C. S., Raj, B. P., Saini, L., Kumar, A., Gopalakrishnan, N., Kumar, A., Balam, N. B., Alam, T., Kapoor, N. R. and Aggarwal, V. (2021). Indoor air quality improvement in COVID-19 pandemic: Review. Sustain. Cities Soc., 70, 102942. Alazazmeh, A. and Asif, M. (2021). Commercial building retrofitting: Assessment of improvements in energy performance and indoor air quality. Case Stud. Therm. Eng., 26, 100946. Alireza Nejad, M. (2009). Launch and implementation of CMAQ (Community Multiscale Air Quality) model with data available in Tehran [Tehran University]. Amadeo, B., Robert, C., Rondeau, V., Mounouchy, M.-A., Cordeau, L., Birembaux, X., Citadelle, E., Gotin, J., Gouranton, M., Marcin, G., Laurac, D. and Raherison, C. (2015). Impact of close-proximity air pollution on lung function in schoolchildren in the French West Indies. BMC Public Health, 15, 45. Amoatey, P., Omidvarborna, H., Baawain, M. S. and Al-Mamun, A. (2020). Impact of building ventilation systems and habitual indoor incense burning on SARS-CoV-2 virus transmissions in Middle Eastern countries. Sci. Total Environ., 733, 139356. Ariunsaikhan, A., Sonomdagva, C. and Matsumi, Y. (2020). Mobile Measurement of PM2.5 Based on an Individual in Ulaanbaatar City. Int. J. Environ. Res. Public Health, 17, 2701. ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) (1989). ANSI/ASHRAE Standard 62-1989. Ventilation for Acceptable Indoor Air Quality, American Society of Heating, Refrigerating and Air-Conditioning Engineers. Retrived July 30th, 2021, from https://www.ashrae.org/ ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) (2019). 2019 ASHRAE HAND book-HVAC Application. Health care facilities. Retrived July 30th, 2021, from https://www.ashrae.org/ ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) (2020a). ASHRAE. Retrived July 30th, 2021, from https://www.ashrae.org/ ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) (2020b). ASHRAE 62.1 , ASHRAE Guide and Data Book. Retrived July 30th, 2021, from https://www.ashrae.org/ ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers) (2021). ASHRAE 62.1 , ASHRAE Guide and Data Book. Retrived July 30th, 2021, from https://www.ashrae.org/ Atarodi, Z., Karimyan, K., Gupta, V. K., Abbasi, M. and Moradi, M. (2018). Evaluation of indoor air quality and its symptoms in office building – A case study of Mashhad, Iran. Data Br., 20, 74–79. Baboli, Z., Neisi, N., Babaei, A. A., Ahmadi, M., Sorooshian, A., Birgani, Y. T. and Goudarzi, G. (2021). On the airborne transmission of SARS-CoV-2 and relationship with indoor conditions at a hospital. Atmos. Environ. (Oxford, England : 1994), 261, 118563. Bartington, S. E., Bakolis, I., Devakumar, D., Kurmi, O. P., Gulliver, J., Chaube, G., Manandhar, D. S., Saville, N. M., Costello, A., Osrin, D., Hansell, A. L. and Ayres, J. G. (2017). Patterns of domestic exposure to carbon monoxide and particulate matter in households using biomass fuel in Janakpur, Nepal. Environ. Pollut., 220, 38–45. Baysal, E., Uzun, U. C., Ertaş, F. N., Goksel, O. and Pelit, L. (2021). Development of a new needle trap-based method for the determination of some volatile organic compounds in the indoor environment. Chemosphere, 277, 130251. Beitollahi, M., Ghiassi-Nejad, M., Esmaeli, A. and Dunker, R. (2007). Radiological studies in the hot spring region of Mahallat, Central Iran. Radiat. Prot. Dosimetry, 123(4), 505–508. Branco, P. T. B. S., Alvim-Ferraz, M. C. M., Martins, F. G., Ferraz, C., Vaz, L. G. and Sousa, S. I. V. (2020). Impact of indoor air pollution in nursery and primary schools on childhood asthma. Sci. Total Environ., 745, 140982. Braniš, M., Safránek, J. and Hytychová, A. (2011). Indoor and outdoor sources of size-resolved mass concentration of particulate matter in a school gym-implications for exposure of exercising children. Environ. Sci. Pollut. Res. Int., 18(4), 598–609. BREEAM (Building Research Establishment Environmental Assessment Method) (2020). Building Research Establishment Environmental Assessment Method. BREEAM Communities Technical Manual. Retrived July 30th, 2021, from https://files.bregroup.com/breeam/technicalmanuals/communitiesmanual/ Can, E., Özden Üzmez, Ö., Döğeroğlu, T. and Gaga, E. O. (2015). Indoor air quality assessment in painting and printmaking department of a fine arts faculty building. Atmos. Pollut. Res., 6(6), 1035–1045. Canha, N., Alves, A. C., Marta, C. S., Lage, J., Belo, J., Faria, T., Cabo Verde, S., Viegas, C., Alves, C. and Almeida, S. M. (2020). Compliance of indoor air quality during sleep with legislation and guidelines - A case study of Lisbon dwellings. Environ. Pollut. (Barking, Essex : 1987), 264, 114619. Cansdale, James H. and MacPhee, C. W. (1972). Technology Pacesetter: 1922---ASHRAE Guide and Data Book---1972. ASHRAE J. (May). Casey, J. G., Ortega, J., Coffey, E. and Hannigan, M. (2018). Low-cost measurement techniques to characterize the influence of home heating fuel on carbon monoxide in Navajo homes. Sci. Total Environ., 625, 608–618. Castro, A., Calvo, A. I., Alves, C., Alonso-Blanco, E., Coz, E., Marques, L., Nunes, T., Fernández-Guisuraga, J. M. and Fraile, R. (2015). Indoor aerosol size distributions in a gymnasium. Sci. Total Environ., 524–525, 178–186. ccm. All Canada Air Quality Management System (AQMS) (2021). Canadian Standards. Retrived July 25th, 2021, from https://www.canada.ca/en/health-canada/services/air-quality/residential-indoor-air-quality-guidelines.html Cheng, J. C. P. and Ma, L. J. (2015). A non-linear case-based reasoning approach for retrieval of similar cases and selection of target credits in LEED projects. Build. Environ., 93, 349–361. Cheraghi, A. (2017). Investigating on the Relationship between Redesigning the Internal Components of Residential Structures and Improving Indoor Air Quality (Case Study: Iran) [Tehran University]. Cole, R. and Valdebenito, M. (2013). The importation of building environmental certification systems: International usages of BREEAM and LEED. Build. Res. Inf., 41. Cooper, E., Wang, Y., Stamp, S., Burman, E. and Mumovic, D. (2021). Use of portable air purifiers in homes: Operating behaviour, effect on indoor PM2.5 and perceived indoor air quality. Build. Environ., 191, 107621. Correia, G., Rodrigues, L., Gameiro da Silva, M. and Gonçalves, T. (2020). Airborne route and bad use of ventilation systems as non-negligible factors in SARS-CoV-2 transmission. Med. Hypotheses, 141, 109781. Deng, X., Thurston, G., Zhang, W., Ryan, I., Jiang, C., Khwaja, H., Romeiko, X., Marks, T., Ye, B., Qu, Y. and Lin, S. (2021). Application of data science methods to identify school and home risk factors for asthma and allergy-related symptoms among children in New York Sci. Total Environ., 770, 144746. Dobson, R., O’Donnell, R., Tigova, O., Fu, M., Enríquez, M., Fernandez, E., Carreras, G., Gorini, G., Verdi, S., Borgini, A., Tittarelli, A., Veronese, C., Ruprecht, A., Vyzikidou, V., Tzortzi, A., Vardavas, C. and Semple, S. (2020). Measuring for change: A multi-centre pre-post trial of an air quality feedback intervention to promote smoke-free homes. Environ. Int., 140, 105738. Dorizas, P. V., Assimakopoulos, M.-N., Helmis, C. and Santamouris, M. (2015). An integrated evaluation study of the ventilation rate, the exposure and the indoor air quality in naturally ventilated classrooms in the Mediterranean region during spring. Sci. Total Environ., 502, 557–570. Ebrahim, S. (2017). The evaluation and deliberation of the sports club’s air quality from BTEX and PM10 [Tehran University]. Elliot, A. J., Smith, S., Dobney, A., Thornes, J., Smith, G. E. and Vardoulakis, S. (2016). Monitoring the effect of air pollution episodes on health care consultations and ambulance call-outs in England during March/April 2014: A retrospective observational analysis. Environ. Pollut. (Barking, Essex : 1987), 214, 903–911. EPA (Environmental Protection Agency) and NIOSH (The National Institude for Occupational Saftey and Health). (1991). Building air quality. Retrived July 25th, 2021, from https://www.cdc.gov/niosh/docs/91-114/default.html and https://www.epa.gov/indoor-air-quality-iaq/building-air-quality-guide-guide-building-owners-and-facility-managers Fazli, T. and Stephens, B. (2018). Development of a nationally representative set of combined building energy and indoor air quality models for U.S. residences. Build. Environ., 136, 198–212. Fischer, A., Ljungström, E., Hägerhed Engman, L. and Langer, S. (2015). Ventilation strategies and indoor particulate matter in a classroom. Indoor Air, 25(2), 168–175. Ghinai, I., McPherson, T. D., Hunter, J. C., Kirking, H. L., Christiansen, D., Joshi, K., Rubin, R., Morales-Estrada, S., Black, S. R., Pacilli, M., Fricchione, M. J., Chugh, R. K., Walblay, K. A., Ahmed, N. S., Stoecker, W. C., Hasan, N. F., Burdsall, D. P., Reese, H. E., Wallace, M., … Layden, J. E. (2020). First known person-to-person transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA. Lancet (London, England), 395(10230), 1137–1144. Giwa, S. O., Nwaokocha, C. N. and Odufuwa, B. O. (2019). Air pollutants characterization of kitchen microenvironments in southwest Nigeria. Build. Environ., 153, 138–147. Gould, C. F., Schlesinger, S. B., Molina, E., Lorena Bejarano, M., Valarezo, A. and Jack, D. W. (2020). Long-standing LPG subsidies, cooking fuel stacking, and personal exposure to air pollution in rural and peri-urban Ecuador. J. Expo. Sci. Environ. Epidemiol., 30(4), 707–720. Ha, S., Nobles, C., Kanner, J., Sherman, S., Cho, S.-H., Perkins, N., Williams, A., Grobman, W., Biggio, J., Subramaniam, A., Ouidir, M., Chen, Z. and Mendola, P. (2020). Air Pollution Exposure Monitoring among Pregnant Women with and without Asthma. Int. J. Environ. Res. Public Health, 17, 4888. Heo, K. J., Noh, J. W., Lee, B. U., Kim, Y. and Jung, J. H. (2019). Comparison of filtration performance of commercially available automotive cabin air filters against various airborne pollutants. Build. Environ., 161, 106272. Ho, S. S. H., Ip, H. S. S., Ho, K. F., Ng, L. P. T., Chan, C. S., Dai, W. T. and Cao, J. J. (2013). Hazardous airborne carbonyls emissions in industrial workplaces in China. J. Air Waste Manag. Assoc. (1995), 63(7), 864–877. Hou, Y., Liu, J. and Li, J. (2015). Investigation of Indoor Air Quality in Primary School Classrooms. Procedia Eng., 121, 830–837. Huang, L., Mo, J., Sundell, J., Fan, Z. and Zhang, Y. (2013). Health risk assessment of inhalation exposure to formaldehyde and benzene in newly remodeled buildings, Beijing. PloS One, 8(11), e79553. Hussain, S., Parker, S., Edwards, K., Finch, J., Jeanjean, A., Leigh, R. and Gonem, S. (2019). Effects of indoor particulate matter exposure on daily asthma control. Ann. Allergy, Asthma Immunol., 123(4), 375-380.e3. Kanchongkittiphon, W., Mendell, M. J., Gaffin, J. M., Wang, G. and Phipatanakul, W. (2015). Indoor environmental exposures and exacerbation of asthma: an update to the 2000 review by the Institute of Medicine. Environ. Health Perspect., 123(1), 6–20. Karami, M., McMorrow, G. V. and Wang, L. (2018). Continuous monitoring of indoor environmental quality using an Arduino-based data acquisition system. J. Build. Eng., 19, 412–419. Kempe, S., Höfle, C., Görres, J., Erhorn-Kluttig, H., Erhorn, H. and Beckert, H.-M. (2015). School of the Future: Deep Renovation of the Solitude-Gymnasium in Stuttgart. Energy Procedia, 78, 3312–3317. Kenarkoohi, A., Noorimotlagh, Z., Falahi, S., Amarloei, A., Mirzaee, S. A., Pakzad, I. and Bastani, E. (2020). Hospital indoor air quality monitoring for the detection of SARS-CoV-2 (COVID-19) virus. Sci. Total Environ., 748, 141324. Kephart, J. L., Fandiño-Del-Rio, M., Williams, K. N., Malpartida, G., Lee, A., Steenland, K., Naeher, L. P., Gonzales, G. F., Chiang, M., Checkley, W. and Koehler, K. (2021). Nitrogen dioxide exposures from LPG stoves in a cleaner-cooking intervention trial. Environ. Int., 146, 106196. Kinney, P. L., Roman, H. A., Walker, K. D., Richmond, H. M., Conner, L. and Hubbell, B. J. (2010). On the use of expert judgment to characterize uncertainties in the health benefits of regulatory controls of particulate matter. Environ. Sci. Policy, 13(5), 434–443. Konstantinou, C., Constantinou, A., Kleovoulou, E. G., Kyriacou, A., Kakoulli, C., Milis, G., Michaelides, M. and Makris, K. C. (2022). Assessment of indoor and outdoor air quality in primary schools of Cyprus during the COVID–19 pandemic measures in May–July 2021. Heliyon, 8(5), e09354. Krarti, M. and Aldubyan, M. (2021). Review analysis of COVID-19 impact on electricity demand for residential buildings. Renew. Sustain. Energy Rev., 143, 110888. Künzli, N., Kaiser, R., Medina, S., Studnicka, M., Chanel, O., Filliger, P., Herry, M., Horak, F., Puybonnieux-Texier, V., Quénel, P., Schneider, J., Seethaler, R., Vergnaud, J.-C. and Sommer, H. (2000). Public-health impact of outdoor and traffic-related air pollution: a European assessment. The Lancet, 356(9232), 795–801. La Guardia, M. J. and Hale, R. C. (2015). Halogenated flame-retardant concentrations in settled dust, respirable and inhalable particulates and polyurethane foam at gymnastic training facilities and residences. Environ. Int., 79, 106–114. Laverge, J., Pattyn, X. and Janssens, A. (2013). Performance assessment of residential mechanical exhaust ventilation systems dimensioned in accordance with Belgian, British, Dutch, French and ASHRAE standards. Build. Environ., 59, 177–186. Lee, C.-M., Kwon, M., Kang, D.-R., Park, T.-H., Park, S.-H. and Kwak, J.-E. (2017). Distribution of radon concentrations in child-care facilities in South Korea. J. Environ. Radioact., 167, 80–85. LEED. (n.d.) (Leadership in Energy and Environmental Design). LEED_v4.1. Retrived July 26th, 2021 https://www.usgbc.org/leed/v41 Lewis, J. J., Hollingsworth, J. W., Chartier, R. T., Cooper, E. M., Foster, W. M., Gomes, G. L., Kussin, P. S., MacInnis, J. J., Padhi, B. K., Panigrahi, P., Rodes, C. E., Ryde, I. T., Singha, A. K., Stapleton, H. M., Thornburg, J., Young, C. J., Meyer, J. N. and Pattanayak, S. K. (2017). Biogas Stoves Reduce Firewood Use, Household Air Pollution, and Hospital Visits in Odisha, India. Environ. Sci. Technol., 51(1), 560–569. Madureira, J., Paciência, I., Rufo, J., Ramos, E., Barros, H., Teixeira, J. P. and de Oliveira Fernandes, E. (2015). Indoor air quality in schools and its relationship with children’s respiratory symptoms. Atmos. Environ., 118, 145–156. Majd, E., McCormack, M., Davis, M., Curriero, F., Berman, J., Connolly, F., Leaf, P., Rule, A., Green, T., Clemons-Erby, D., Gummerson, C. and Koehler, K. (2019). Indoor air quality in inner-city schools and its associations with building characteristics and environmental factors. Environ. Res., 170, 83–91. Martín Martín, R. and Sánchez Bayle, M. (2018). [Impact of air pollution in paediatric consultations in Primary Health Care: Ecological study]. An. Pediatr. (Barc)., 89(2), 80–85. Megahed, N. A. and Ghoneim, E. M. (2021). Indoor Air Quality: Rethinking rules of building design strategies in post-pandemic architecture. Environ. Res., 193, 110471. Miane saz, E. (2018). Theoretical-empirical assessment of the administrative indoor air in terms of comfort and environment standards and a remedial solution (case study of office building in Vanak, Tehran) [Tehran University]. Ming, T., Fang, W., Peng, C., Cai, C., De Richter, R., Ahmadi, M. H. and Wen, Y. (2018). Impacts of Traffic Tidal Flow on Pollutant Dispersion in a Non-Uniform Urban Street Canyon. Atmosphere (Basel)., 9(3). Mohammadi, A. (2014). Land use and air quality in cities (Case study: Tehran) [Tehran University]. Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P. and Stewart, L. A. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst. Rev., 4(1), 1. Monks, P. S., Granier, C., Fuzzi, S., Stohl, A., Williams, M. L., Akimoto, H., Amann, M., Baklanov, A., Baltensperger, U., Bey, I., Blake, N., Blake, R. S., Carslaw, K., Cooper, O. R., Dentener, F., Fowler, D., Fragkou, E., Frost, G. J., Generoso, S., … von Glasow, R. (2009). Atmospheric composition change - global and regional air quality. Atmos. Environ., 43(33), 5268–5350. Morawska, L. and Cao, J. (2020). Airborne transmission of SARS-CoV-2: The world should face the reality. Environment International, 139, 105730. Moschandreas, D. J. and Vuilleumier, K. L. (1999). ETS levels in hospitality environments satisfying ASHRAE standard 62-1989: “ventilation for acceptable indoor air quality.” Atmos. Environ., 33(26), 4327–4340. Motalei, S. (2014). Improving indoor air quality through architectural design [Tehran University]. Ng, M. O., Qu, M., Zheng, P., Li, Z. and Hang, Y. (2011). CO2-based demand controlled ventilation under new ASHRAE Standard 62.1-2010: a case study for a gymnasium of an elementary school at West Lafayette, Indiana. Energy Build., 43(11), 3216–3225. NIOSH (The National Institude for Occupational Saftey and Health) (2021). National Institute for Occupational Safety and Health. Retrived July 25th, 2021, from https://www.cdc.gov/niosh/docs/91-114/default.html Oliayee, M. (2012). Field evaluation of air quality inside the buildings in dormitory of Tehran University [Tehran University]. OSHA (Occupational Safety and Health Administration) (1989). Industrial Exposure and Control Technologies for OSHA Regulated Hazardous Substances, Volume I of II, Substance A - I. Occupational Safety and Health Administration. Retrived July 25th, 2021, from https://www.osha.gov/aboutosha OSHA (Occupational Safety and Health Administration) (2021). Occupational Safety and Health Administration Permissible Exposure Limits- Annotated Tables. Retrived July 25th, 2021, from https://www.osha.gov/aboutosha Othman, M., Latif, M. T., Yee, C. Z., Norshariffudin, L. K., Azhari, A., Halim, N. D. A., Alias, A., Sofwan, N. M., Hamid, H. H. A. and Matsumi, Y. (2020). PM2.5 and ozone in office environments and their potential impact on human health. Ecotoxicol. Environ. Saf., 194, 110432. Pacitto, A., Amato, F., Moreno, T., Pandolfi, M., Fonseca, A., Mazaheri, M., Stabile, L., Buonanno, G. and Querol, X. (2020). Effect of ventilation strategies and air purifiers on the children’s exposure to airborne particles and gaseous pollutants in school gyms. Sci. Total Environ., 712, 135673. Park, D. Y. and Chang, S. (2020). Effects of combined central air conditioning diffusers and window-integrated ventilation system on indoor air quality and thermal comfort in an office. Sustain. Cities Soc., 61, 102292. Pavilonis, B., Roelofs, C. and Blair, C. (2018). Assessing indoor air quality in New York City nail salons. J. Occup. Environ. Hyg., 15(5), 422–429. Pedro, J., Silva, C. and Pinheiro, M. D. (2019). Integrating GIS spatial dimension into BREEAM communities sustainability assessment to support urban planning policies, Lisbon case study. Land Use Policy, 83, 424–434. Pétigny, N., Zhang, J., Horner, E., Steady, S., Chenal, M., Mialon, G. and Goletto, V. (2021). Indoor air depolluting material: Combining sorption testing and modeling to predict product’s service life in real conditions. Build. Environ., 107838. Poulin, P., Leclerc, J.-M., Dessau, J.-C., Deck, W. and Gagnon, F. (2012). Radon measurement in schools located in three priority investigation areas in the province of Quebec, Canada. Radiat. Prot. Dosimetry, 151, 278–289. Rajabi Hazaveh, E. (2017). Determining the relationship between the effects of air pollutants on indoor air quality and offering architectural solutions to improve indoor air quality [Tehran University]. Ramos, C. A., Wolterbeek, H. T. and Almeida, S. M. (2014). Exposure to indoor air pollutants during physical activity in fitness centers. Build. Environ., 82, 349–360. Reddy, M., Heidarinejad, M., Stephens, B. and Rubinstein, I. (2021). Adequate indoor air quality in nursing homes: An unmet medical need. Sci. Total Environ., 765, 144273. Remmert, V., Ciaburri, C., Sandoval, A., Stephenson, C., Rojas, A., Hernandez, E., Hernandez, L., Ward, P., Ainslie, R. and Mercer, T. (2020). Understanding community health needs and forging an academic global health partnership in Puebla, Mexico: a mixed methods study. Lancet Glob. Heal., 8, S13. Schmitt, L. H. M. (2016). QALY gain and health care resource impacts of air pollution control: A Markov modelling approach. Environ. Sci. Policy, 63, 35–43. Shen, J.-H., Wang, Y.-S., Lin, J.-P., Wu, S.-H. and Horng, J.-J. (2014). Improving the indoor air quality of respiratory type of medical facility by zeolite filtering. J. Air Waste Manag. Assoc. (1995), 64(1), 13–18. Shiue, A., Hu, S.-C., Tseng, C.-H., Kuo, E.-H., Liu, C.-Y., Hou, C.-T. and Yu, T. (2019). Verification of air cleaner on-site modeling for PM2.5 and TVOC purification in a full-scale indoor air quality laboratory. Atmos. Pollut. Res., 10(1), 209–218. Shrestha, M., Rijal, H. B., Kayo, G. and Shukuya, M. (2022). An investigation on CO2 concentration based on field survey and simulation in naturally ventilated Nepalese school buildings during summer. Build. Environ., 207, 108405. Sicard, P., Lesne, O., Alexandre, N., Mangin, A. and Collomp, R. (2011). Air quality trends and potential health effects – Development of an aggregate risk index. Atmospheric Environment, 45(5), 1145–1153. Sicard, P., Talbot, C., Lesne, O., Mangin, A., Alexandre, N. and Collomp, R. (2012). The Aggregate Risk Index: An intuitive tool providing the health risks of air pollution to health care community and public. Atmos. Environ., 46, 11–16. Singer, B., Chan, W., Kim, Y.-S., Offermann, F. and Walker, I. (2020). Indoor Air Quality in California Homes with Code‐Required Mechanical Ventilation. Indoor Air, 30. Singh, D., Kumar, A., Kumar, K., Singh, B., Mina, U., Singh, B. B. and Jain, V. K. (2016). Statistical modeling of O3, NOx, CO, PM2.5, VOCs and noise levels in commercial complex and associated health risk assessment in an academic institution. Sci. Total Environ., 572, 586–594. Snider, G., Carter, E., Clark, S., Tseng, J. (Tzu W., Yang, X., Ezzati, M., Schauer, J. J., Wiedinmyer, C. and Baumgartner, J. (2018). Impacts of stove use patterns and outdoor air quality on household air pollution and cardiovascular mortality in southwestern China. Environ. Int., 117, 116–124. Stabile, L., Dell’Isola, M., Russi, A., Massimo, A. and Buonanno, G. (2017). The effect of natural ventilation strategy on indoor air quality in schools. Sci. Total Environ., 595, 894–902. Staveckis, A. and Borodinecs, A. (2021). Impact of impinging jet ventilation on thermal comfort and indoor air quality in office buildings. Energy Build., 235, 110738. Steinemann, A. (2017a). Health and societal effects from exposure to fragranced consumer products. Prev. Med. Reports, 5, 45–47. Steinemann, A. (2017b). Ten questions concerning air fresheners and indoor built environments. Build. Environ., 111, 279–284. Suzer, O. (2019). Analyzing the compliance and correlation of LEED and BREEAM by conducting a criteria-based comparative analysis and evaluating dual-certified projects. Build. Environ., 147, 158–170. Szigeti, T., Dunster, C., Cattaneo, A., Cavallo, D., Spinazzè, A., Saraga, D. E., Sakellaris, I. A., de Kluizenaar, Y., Cornelissen, E. J. M., Hänninen, O., Peltonen, M., Calzolai, G., Lucarelli, F., Mandin, C., Bartzis, J. G., Záray, G. and Kelly, F. J. (2016). Oxidative potential and chemical composition of PM2.5 in office buildings across Europe – The OFFICAIR study. Environ. Int., 92–93, 324–333. Taj, T., Jakobsson, K., Stroh, E. and Oudin, A. (2016). Air pollution is associated with primary health care visits for asthma in Sweden: A case-crossover design with a distributed lag non-linear model. Spat. Spatiotemporal. Epidemiol., 17, 37–44. Thorsen, M. A. and Mølhave, L. (1967). Elements of a standard protocol for measurements in the indoor atmospheric environment. Atmos. Environ. (1967), 21(6), 1411–1416. Toyinbo, O., Phipatanakul, W., Shaughnessy, R. and Haverinen-Shaughnessy, U. (2019). Building and indoor environmental quality assessment of Nigerian primary schools: A pilot study. Indoor Air, 29(3), 510–520. US EPA (United States Environmental Protection Agency) (2021). IAQ guidelines. Retrived July 25th, 2021, from https://www.epa.gov/indoor-air-quality-iaq/building-air-quality-guide-guide-building-owners-and-facility-managers Vassella, C. C., Koch, J., Henzi, A., Jordan, A., Waeber, R., Iannaccone, R. and Charrière, R. (2021). From spontaneous to strategic natural window ventilation: Improving indoor air quality in Swiss schools. Int. J. Hyg. Environ. Health, 234, 113746. Vimercati, L., Fucilli, F., Cavone, D., De Maria, L., Birtolo, F., Ferri, G. M., Soleo, L. and Lovreglio, P. (2018). Radon Levels in Indoor Environments of the University Hospital in Bari-Apulia Region Southern Italy. Int. J. Environ. Res. Public Health, 15(4). Voinova, M. V. (2018). The theory of acoustic sensors application in air quality control. Urban Clim., 24, 264–275. Wang, J., Smedje, G., Nordquist, T. and Norbäck, D. (2015). Personal and demographic factors and change of subjective indoor air quality reported by school children in relation to exposure at Swedish schools: A 2-year longitudinal study. Sci. Total Environ., 508, 288–296. Whyte, J., Falcomer, R. and Chen, J. (2019). A Comparative Study of Radon Levels in Federal Buildings and Residential Homes in Canada. Health Phys., 117(3), 242–247. Willand, N. and Nethercote, M. (2020). Smoking in apartment buildings – Spatiality, meanings and understandings. Health & Place, 61, 102269. Wong, T. W., Tam, W. W. S., Yu, I. T. S., Lau, A. K. H., Pang, S. W. and Wong, A. H. S. (2013). Developing a risk-based air quality health index. Atmos. Environ., 76, 52–58. Woolley, K., Bartington, S. E., Pope, F. D., Price, M. J., Thomas, G. N. and Kabera, T. (2021). Biomass cooking carbon monoxide levels in commercial canteens in Kigali, Rwanda. Arch. Environ. Occup. Health, 76(2), 75–85. WHO (World Health Organization) (2010). WHO. In WHO guidelines for indoor air quality: selected pollutants. The WHO European Center for Environment and Health, Bonn Office, WHO Regional Office for Europe coordinated the development of these WHO guidelines. Retrived July 25th, 2021, from https://www.who.int/ WHO (World Health Organization) (2014). WHO guidelines for indoor air quality: household fuel combustion. Retrived July 25th, 2021, from https://www.who.int/ Wu, P., Fang, Z., Luo, H., Zheng, Z., Zhu, K., Yang, Y. and Zhou, X. (2021). Comparative analysis of indoor air quality in green office buildings of varying star levels based on the grey method. Build. Environ., 195, 107690. Wylie, B. J., Matechi, E., Kishashu, Y., Fawzi, W., Premji, Z., Coull, B. A., Hauser, R., Ezzati, M. and Roberts, D. J. (2017). Placental Pathology Associated with Household Air Pollution in a Cohort of Pregnant Women from Dar es Salaam, Tanzania. Environ. Health Perspect., 125(1), 134–140. Xu, H., Zeng, W., Guo, B., Hopke, P. K., Qiao, X., Choi, H., Luo, B., Zhang, W. and Zhao, X. (2020). Improved risk communications with a Bayesian multipollutant Air Quality Health Index. Sci. Total Environ., 722, 137892. Yang, C.-T., Chen, S.-T., Den, W., Wang, Y.-T. and Kristiani, E. (2019). Implementation of an Intelligent Indoor Environmental Monitoring and management system in cloud. Futur. Gener. Comput. Syst., 96, 731–749. Yip, F., Christensen, B., Sircar, K., Naeher, L., Bruce, N., Pennise, D., Lozier, M., Pilishvili, T., Loo Farrar, J., Stanistreet, D., Nyagol, R., Muoki, J., de Beer, L., Sage, M. and Kapil, V. (2017). Assessment of traditional and improved stove use on household air pollution and personal exposures in rural western Kenya. Environ. Int., 99, 185–191. Yuan, J., Chen, Z., Zhong, L. and Wang, B. (2019). Indoor air quality management based on fuzzy risk assessment and its case study. Sustain. Cities Soc., 50, 101654. Zender – Świercz, E. (2020). Improvement of indoor air quality by way of using decentralised ventilation. J. Build. Eng., 32, 101663. Zhalehdoost, A. and Taleai, M. (2022). A Review of the Application of Machine Learning and Geospatial Analysis Methods in Air Pollution Prediction. Pollution, 8(3), 904–933. Zhan, Y., Johnson, K., Norris, C., Shafer, M. M., Bergin, M. H., Zhang, Y., Zhang, J. and Schauer, J. J. (2018). The influence of air cleaners on indoor particulate matter components and oxidative potential in residential households in Beijing. Sci. Total Environ., 626, 507–518. Zhang, F., Xu, J., Zhang, Z., Meng, H., Wang, L., Lu, J., Wang, W. and Krafft, T. (2015). Ambient air quality and the effects of air pollutants on otolaryngology in Beijing. Environ. Monit. Assess., 187(8), 495. | ||
آمار تعداد مشاهده مقاله: 405 تعداد دریافت فایل اصل مقاله: 515 |