تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,099,020 |
تعداد دریافت فایل اصل مقاله | 97,206,582 |
مطالعه عددی خصوصیات جریان در آبراهه روباز مرکب با پوشش گیاهی لایهای ناهمگون در سیلابدشت | ||
تحقیقات آب و خاک ایران | ||
دوره 53، شماره 11، بهمن 1401، صفحه 2515-2531 اصل مقاله (2.45 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2022.348361.669356 | ||
نویسندگان | ||
فریبا احمدی دهرشید1؛ مهدی یاسی2؛ مجید حیدری* 1 | ||
1گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران | ||
2گروه مهندسی آبیاری و آبادانی، دانشکده کشاورزی و منابع طبیعی کرج، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
پوشش گیاهی نقش اساسی در تغییر خصوصیات جریان آبراهههای طبیعی مانند رودخانهها دارد. مدلسازی کارآمد هیدرولیک جریان در آبراهه مرکب با سیلابدشتهای دارای پوشش گیاهی برای درک و تعیین فرآیندهای طبیعی جریان ضروری است. آبراهههای طبیعی و یا انسانساخت اغلب دارای پوشش گیاهی گوناگون با تراکم و ارتفاعهای متفاوت هستند. هدف اصلی این پژوهش بررسی تاثیر پوشش گیاهی لایهای بر خصوصیات جریان در آبراهه مرکب با استفاده از مدل FLOW-3D میباشد. نتایج مدل عددی با نتایج نظیر از مدل فیزیکی تحقیق Takuya et al., (2014)واسنجی و تایید شده است. آزمایشها در سال 2014 در آزمایشگاه هیدرولیک دانشگاه ملی فناوری آکاشی در ژاپن، و در یک کانال ذوزنقهای مستقیم به طول 8/4 متر و عرض 8/0 متر انجام یافت. خطای برآورد مدل برای سرعت متوسط عمقی بترتیب در مرحله واسنجی در دامنه 4 تا 6 درصد بود، که در مرحله تائید مدل به حدود 5/1 درصد کاهش یافت. متوسط خطای برآورد عمق آب نیز در حدود 3 درصد بوده است. در شبیه-سازی الگوی جریان، تطابق خوبی بین نتایج مدل عددی با نتایج مدل فیزیکی وجود دارد. نتایج شبیهسازی مدل نشان داد که برای شرایط سیلابهای بزرگتر که پوشش گیاهی در سیلابدشت مستغرق میشود، پروفیل عمودی سرعت در سیلابدشت بصورت S شکل است. در حالیکه در شرایط سیلابهای کوچکتر یا زمانی که پوشش گیاهی کوتاه و بلند غیرمستغرق باشند، پروفیل سرعت عمودی دارای توزیع نسبتا یکنواخت یا لگاریتمی است. مقاومت ناشی از حضور پوشش گیاهی در سیلابدشتها سبب کاهش سرعت جریان در ناحیه سیلابدشت رودخانه، و همچنین افزایش ظرفیت انتقال بده جریان در آبراهه اصلی میگردد. | ||
کلیدواژهها | ||
پروفیل سرعت؛ پوشش گیاهی لایه ای؛ لایه اختلاط؛ مدلسازی عددی؛ مدل فیزیکی | ||
عنوان مقاله [English] | ||
Flow characteristics in a compound channel with double-layer vegetated floodplains: a numerical study | ||
نویسندگان [English] | ||
fariba ahmadi dehrashid1؛ Mehdi Yasi2؛ majid heidari1 | ||
1Department of Water Science and Engineering, Faculty of Agriculture, University of Bu Ali Sina, Hamedan, iran | ||
2Department of Irrigation and Reclamation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
چکیده [English] | ||
Vegetation plays an essential role in modifying the flow characteristics of natural channels, such as rivers. Efficient hydraulic modeling of flow in compound channels with vegetated floodplains is necessary to understand and identify natural flow processes. In both natural and artificial channels, there are various types of vegetation with differing densities and heights. The main goal of this study is to investigate the effect of double-layered vegetation on flow characteristics in compound channels using the FLOW-3D model. The results of the numerical model have been calibrated and validated with the results of the physical model of the research of Takuya et al., 2014. Experiments were conducted in 2014 in the hydraulic laboratory of the Akashi National University of Technology in Japan, and in a straight trapezoidal channel with a length and width of 4.8 and 0.8 m respectively. During calibration, the model's estimation error for the depth-averaged velocity was within 4 to 6%, which was reduced to approximately 1.5% during validation. The average error in water depth estimation was around 3%. The numerical and physical models showed good agreement in simulating the flow pattern. The numerical model showed that, for larger floods when vegetation is submerged, the vertical profile of velocity in the floodplain is S-shaped. However, during smaller floods or when short and tall vegetation is emergent, the vertical velocity profile is relatively uniform or logarithmic. The resistance caused by the presence of vegetation in the floodplains leads to a decrease in the flow velocity in the floodplain area of the river and an increase in the capacity of flow transfer in the main channel. | ||
کلیدواژهها [English] | ||
Double-layered vegetation, Mixing layer, Numerical modeling, Physical model, Velocity profile | ||
مراجع | ||
Ahmadi Dehrashid, F., Heidari, M., Rahimi, H.R., Khoshkonesh, A., Yuan, S., Tang, X., Lu, C., Wang, X. (2022). CFD modeling the flow dynamics in an open channel with double-layered vegetation. Modeling earth system and environment. doi.org/10.1007/s40808-022-01513-4. Anjum, N., & Tanaka, N. (2020). Study on the flow structure around discontinued vertically layered vegetation in an open channel. Journal of Hydrodynamics, 32(3), 454-467. doi: 10.1007/s42241-019-0040-2. Anjum, N., Ghani, U., Ahmed Pasha, G., Latif, A., Sultan, T., & Ali, S. (2018). To investigate the flow structure of discontinuous vegetation patches of two vertically different layers in an open channel. Water, 10(1), 75. doi: 10.3390/w10010075. Carollo, F. G., Ferro, V. I. T. O., & Termini, D. (2002). Flow velocity measurements in vegetated channels. Journal of hydraulic Engineering, 128(7), 664-673. doi.org/10.1061/(ASCE)0733-9429(2002)128:7(664). Chao, L. I. U., Shan, Y. Q., Yang, K. J., & Liu, X. N. (2013). The characteristics of secondary flows in compound channels with vegetated floodplains. Journal of Hydrodynamics, Ser. B, 25(3), 422-429. doi.org/10.1016/S1001-6058(11)60381-9 Chatelain, M., & Proust, S. (2021). Open-channel flows through emergent rigid vegetation: Effects of bed roughness and shallowness on the flow structure and surface waves. Physics of Fluids, 33(10), 106602. https://doi.org/10.1063/5.0063288ï Chembolu, V., Kakati, R., & Dutta, S. (2019). A laboratory study of flow characteristics in natural heterogeneous vegetation patches under submerged conditions. Advances in Water Resources, 133, 103418. https://doi.org/10.1016/j.advwatres.2019.103418. Dehrashid, F. A., Gohari, S., Asim, T., Mishra, R., Khoshkonesh, A., Bahamanpouri, F., & Nsom, B. (2022). Experimental and Numerical Study of Local Scouring Downstream of D-Type Piano Key Weir. International Journal of COMADEM, 25(1), 51-62. Fathi-Moghadam, M., Kashefipour, M., Ebrahimi, N., & Emamgholizadeh, S. (2011). Physical and numerical modeling of submerged vegetation roughness in rivers and flood plains. Journal of Hydrologic Engineering, 16(11), 858-864. https://doi.org/10.1061/(ASCE)HE.1943-5584. 0000381. Finnigan, J. (2000). Turbulence in plant canopies. Annual review of fluid mechanics, 32(1), 519-57. doi: 10.1146/annurev.fluid.32.1.519. Flow Science. (2016). FLOW-3D Documentation. Ghani, U., Anjum, N., Pasha, G. A., & Ahmad, M. (2019). Numerical investigation of the flow characteristics through discontinuous and layered vegetation patches of finite width in an open channel. Environmental Fluid Mechanics, 19(6), 1469-1495. doi.org/10.1007/s10652-019-09669-x. Ghisalberti, M., & Nepf, H. (2006). The structure of the shear layer in flows over rigid and flexible canopies. Environmental Fluid Mechanics, 6(3), 277-30. doi: 10.1007/s10652-006-0002-4. Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, 39(1), 201-225. https://doi.org/10.1016/0021-9991(81)90145-5 Huai, W. X., Zhang, J., Wang, W. J., & Katul, G. G. (2019). Turbulence structure in open channel flow with partially covered artificial emergent vegetation. Journal of Hydrology, 573, 180-193. doi: 10.1016/j.jhydrol.2019.03.071. Ikeda, S., & Kanazawa, M. (1996). Three-dimensional organized vortices above flexible water plants. Journal of Hydraulic Engineering, 122(11), 634-640. doi.org/10.1061/(ASCE)0733-9429(1996)122:11(634). Khoshkonesh, A., Daliri, M., Riaz, K., Dehrashid, F. A., Bahmanpouri, F., & Di Francesco, S. (2022). Dam-break flow dynamics over a stepped channel with vegetation. Journal of Hydrology, 613, 128395. doi.org/10.1016/j.jhydrol.2022.128395 Koftis, T., & Prinos, P. (2018). Reynolds stress modelling of flow in compound channels with vegetated floodplains. Journal of Applied Water Engineering and Research, 6(1), 17-27. doi: 10.1080/23249676.2016.1209437. Kouwen, N., Unny, T. E., & Hill, H. M. (1969). Flow retardance in vegetated channels. Journal of the Irrigation and Drainage Division, 95(2), 329-342. doi.org/10.1061/JRCEA4.0000652. Liu, D., Diplas, P., Hodges, C. C., & Fairbanks, J. D. (2010). Hydrodynamics of flow through double layer rigid vegetation. Geomorphology, 116(3-4), 286-296. doi: 10.1016/j.geomorph.2009.11.024. Nepf, H. M., Sullivan, J. A., & Zavistoski, R. A. (1997). A model for diffusion within emergent vegetation. Limnology and Oceanography, 42(8), 1735-1745. Nepf, H. M., & Vivoni, E. R. (2000). Flow structure in depth‐limited, vegetated flow. Journal of Geophysical Research: Oceans, 105(C12), 28547-28557. doi: 10.1029/2000JC900145. Nepf, H., White, B., Lightbody, A., & Ghisalberti, M. (2007). Transport in aquatic canopies. In Flow and transport processes with complex obstructions (pp. 221-250). Springer, Dordrecht. Nepf, H. M. (2012). Hydrodynamics of vegetated channels. Journal of Hydraulic Research, 50(3), 262-279. Nikmanesh, M. )2011(. Predict the impact of vegetation on the banks and riverbed hydraulic roughness coefficient in Shiraz River. Journal of Science and Water Engineering, Islamic Azad University, Science and Research Branch, Khozestan (in Persian). Nezu, I., & Sanjou, M. (2008). Turburence structure and coherent motion in vegetated canopy open-channel flows. Journal of hydro-environment research, 2(2), 62-90. https://doi.org/10.1016/j.jher.2008.05.003 Osman, E. A. )2003(. The Hydraulic Behavior of Vegetated Channel. M. Sc. Thesis, Ain Shams University, Cairo, Egypt. Pasha, G. A., Tanaka, N., Yagisawa, J., & Achmad, F. N. (2018). Tsunami mitigation by combination of coastal vegetation and a backward-facing step. Coastal Engineering Journal, 60(1), 104-125. https://doi.org/10.1080/21664250.2018.14370 14 Rahimi, H. R., Tang, X., & Singh, P. (2020). Experimental and numerical study on impact of double layer vegetation in open channel flows. Journal of Hydrologic Engineering, 25(2), 04019064. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001865 Rameshwaran, P., & Shiono, K. (2007). Quasi two-dimensional model for straight overbank flows through emergent. Journal of Hydraulic Research, 45(3), 302-315. doi: 10.1080/00221686.2007.9521765 Ren, J. T., Wu, X. F., & Zhang, T. (2021). A 3-D numerical simulation of the characteristics of open channel flows with submerged rigid vegetation. Journal of Hydrodynamics, 33(4), 833-843.. https://doi.org/10.1007/s42241-021-0063-3. Ruonan, B., Liekai, C., Xingkui, W., & Danxun, L. (2016). Comparison of ADV and PIV measurements in open channel flows. Procedia Engineering, 154, 995-1001. Singh, P., Rahimi, H. R., & Tang, X. (2019). Parameterization of the modeling variables in velocity analytical solutions of open-channel flows with double-layered vegetation. Environmental Fluid Mechanics, 19(3), 765-784. doi.org/10.1007/s10652-018-09656-8. Sohrabi, S., Afzalimehr, H., & Singh, V. P. (2022). Estimation of drag coefficient of emergent and submerged vegetation patches with various densities and arrangements in open channel flow. ISH Journal of Hydraulic Engineering, 1-11. https://doi.org/10.1080/09715010.2022.2066482 Sun, X., & Shiono, K. (2009). Flow resistance of one-line emergent vegetation along the floodplain edge of a compound open channel. Advances in Water Resources, 32(3), 430-438. doi: 10.1016/j.advwatres.2008.12.004. Takuya, U., Keiichi, K., and Kohji, M. (2014). Experimental and numerical study on hydrodynamics of riparian vegetation. Journal of Hydrodynamic, 26: 796-806. doi: 10.1016/S1001-6058(14)60088-3. Tang, X., Rahimi, H., Singh, P., Wei, Z., Wang, Y., Zhao, Y., & Lu, Q. (2019). Experimental study of open-channel flow with partial double-layered vegetation. In E3S Web of Conferences (Vol. 81, p. 01010). EDP Sciences. doi.org/10.1051/e3sconf/20198101010 Tang, X., Rahimi, H., Singh, P., Wei, Z., Wang, Y., Zhao, Y., & Lu, Q. (2019). Experimental study of open-channel flow with partial double-layered vegetation. In E3S Web of Conferences (Vol. 81, p. 01010). EDP Sciences. Tang, X., Guan, Y., Zhang, Y., Zhang, W., Jiang, Y., Liu, T., & Yi, X. (2021, February). Effect of Vegetation on the Flow of a Partially-Vegetated Channel. In IOP Conference Series: Earth and Environmental Science (Vol. 668, No. 1, p. 012050). IOP Publishing, doi:10.1088/1755- 1315/668/1/012050 Tang, X., Rahimi, H., Guan, Y., & Wang, Y. (2021). Hydraulic characteristics of open-channel flow with partially-placed double layer rigid vegetation. Environmental Fluid Mechanics, 21(2), 317-342. DOI: 10.1007/s10652-020-09775-1. Tsujimoto, T., & Kitamura, T. (1990). Velocity profile of flow in vegetated-bed channels. KHL progressive report, 1, 43e55. Tsujimoto, T. (1992). Turbulent open-channel flow over bed covered by rigid vegetation. Journal of Hydr. sc and Hydr. Eng, Japan, 10(2), 13-25. Yang, K., Cao, S., & Knight, D. W. (2007). Flow patterns in compound channels with vegetated floodplains. Journal of Hydraulic Engineering, 133(2), 148-159. doi: 10.1061/(ASCE)0733-9429(2007)133:2(148). Yonesi, H. A., Omid, M. H., & Ayyoubzadeh, S. A. (2013). The hydraulics of flow in non-prismatic compound channels. J Civil Eng Urban, 3(6), 342-356. Zhao, F., Huai, W., & Li, D. (2017). Numerical modeling of open channel flow with suspended canopy. Advances in Water Resources, 105, 132-143. doi.org/10.1016/j.advwatres.2017.05.001 | ||
آمار تعداد مشاهده مقاله: 329 تعداد دریافت فایل اصل مقاله: 338 |