تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,700 |
تعداد دریافت فایل اصل مقاله | 97,206,350 |
ارزیابی و واسنجی معادله پریستلی تیلور برای تخمین تبخیر تعرق در اقلیم باد خیز (مطالعه موردی منطقه سیستان) | ||
تحقیقات آب و خاک ایران | ||
دوره 53، شماره 11، بهمن 1401، صفحه 2551-2564 اصل مقاله (1.67 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2022.349900.669375 | ||
نویسندگان | ||
هما دارابی1؛ محمد مهدی چاری* 2؛ پیمان افراسیاب2؛ حلیمه پیری2؛ پریسا کهخا مقدم3 | ||
1گروه مهندسی آب، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران | ||
2گروه مهندسی آب، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران. | ||
3گروه مهندسی آب ، دانشکده آب و خاک، دانشگاه زابل، زابل- ایران | ||
چکیده | ||
روش فائو پنمن-مانتیث بهعنوان روش استاندارد، به دادههای هواشناسی زیادی نیاز دارد. تهیه دقیق این دادهها در تمامی مناطق امکانپذیر نیست درنتیجه روشهای جایگزین که به دادههای کمتری نیاز دارند مورد بررسی قرار میگیرند. روش پریستلی- تیلور به دادههای هواشناسی کم نیاز دارند و کاربرد آنها در مناطقی که دادههای هواشناسی در دسترس نیست میتواند مفید باشد. منطقه سیستان در جنوب شرقی ایران یکی از مناطقی است که با توجه به بادهای 120 روز و تغییرات دمایی بالای شبانهروز در ایران منحصربهفرد است. هدف از این تحقیق ارزیابی تبخیر-تعرق روش پریستلی تیلور در مقایسه با روش پنمن- مونتیث فائو در منطقه بادخیز سیستان و اصلاح این معادله با توجه به شرایط باد برای منطقه سیستان میباشد. برای این منظور از دادههای 30 سال هواشناسی در منطقه سیستان استفاده شد. ضریب معادله پریستلی-تیلور (α_PT) یکی از مهمترین پارامترهای این معادله است که در ارزیابی معادله به کار میرود. در معادله اصلی مقدار آن برابر با 26/1 میباشد. نتایج نشان داد که مقدار ضریب تبخیر در معادله اصلی (برابر با 26/1) برای منطقه سیستان مناسب نمیباشد و باید اصلاح شود. مقدار اصلاحی آن بین 02/1 تا 11/6 متغیر بود. میانگین مقدار α_PT برابر با 18/2 به دست آمد که 73% با مقدار معادله اصلی (26/1) متفاوت است. همچنین یک رابطه رگرسیونی بین سرعت باد و α_PT (α_(PT-U2)) ارائه گردید. نتایج نشان میدهد که مقدار تبخیر تعرق بهدستآمده با استفاده از α_(PT-U2) با NRMSE برابر با 6/11 درصد شاخص توافق برابر 98 دارای بهترین نتایج است. | ||
کلیدواژهها | ||
تبخیر-تعرق؛ پریستلی-تیلور واسنجی؛ سرعت باد | ||
عنوان مقاله [English] | ||
Evaluation and Calibration of Priestley-Taylor Equation for Estimating Monthly Reference Evapotranspiration in Windy Areas of Sistan | ||
نویسندگان [English] | ||
homa darabi1؛ mohammad mahdi chari2؛ Peyman Afrasiab2؛ halimeh piri2؛ parisa kahkhamoghadam3 | ||
1Water Engineering Department, Faculty of water and soil, University of Zabol, Zabol, Iran. | ||
2Water Engineering Department, Faculty of water and soil, University of Zabol, Zabol, Iran. | ||
3Water Engineering Department, Faculty of water and soil, University of Zabol, Zabol, Iran | ||
چکیده [English] | ||
The FAO Penman-Monteith method as a standard method requires a lot of meteorological data. The accurate preparation of these data is not possible in all regions; as a result, alternative methods that require less data are investigated. Prestley-Taylor method require a few meteorological data and its application can be useful in areas where meteorological data is not available. The Sistan region in the southeast of Iran is one of the regions that is unique in Iran due to the 120-day winds and high day-night temperature changes. The purpose of this research is to evaluate Prestley-Taylor method compared to the PMF-56 method and to modify this equation according to the wind conditions for the region of Sistan. For this purpose, 30 years of meteorological data in Sistan region were used. The coefficient of Priestley-Taylor equation (α_PT) is one of the most important parameters which is used for evaluation of the equation. The results showed that the value of the evaporation coefficient in the main equation (1.26) for the Sistan region is too low and should be corrected. Its correction value varied between 1.02 and 6.11. The average value of α_PT was equal to 2.16, which is 71% different from the default value (1.26). Also, a regression relationship between wind speed and α_PT was presented. The results show that the amount of evapotranspiration obtained using the correction factor based on the wind speed (α_(PT-U2)) has the best results. | ||
کلیدواژهها [English] | ||
Evapotranspiration, Priestley-Taylor Calibration, Wind speed | ||
مراجع | ||
Abtew, W. 1996. Evapotranspiration measurements and modeling for three wetland systems in south Florida. Journal of American Water Resource Association, 32, 465–473. Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration, guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, Food and Agriculture Organization of the United Nations, Rome. Bandaragoda, C., Tarboton, D. G., & Woods, R. (2004). Application of TOPNET in the distributed model intercomparison project. Journal of Hydrolgy, 298(1–4), 178–201. Black, T. A. (1979). Evapotranspiration from Douglas-fir stands exposed to soil water deficits. Water Resource Reserarch, 15(1), 164–170. Benli, B., Bruggeman, A., Oweis, T., & Ustun, H. (2010). Performance of Penman-Monteith FAO56 in a semiarid highland environment. Journal Irrigation and Drainage Engeneering, 136(11), 757–765. Bello, R. L., & Smith, J. D. (1990). The effect of weather variability on the energy balance of a lake in the Hudson Bay Lowlands, Canada. Arctic, Antarctic, and Alpine Research, 22(1), 98–107. Berengena, J., & Gavilàn, P. (2005). Reference evapotranspiration estimation in a highly advective semiarid environment. Journal Irrigation and Drainage Engeneering, 131(2), 147–163. Castellvi, F., Stockle, C. O., Perez, P. J., & Ibanez, M. (2001). Comparison of methods for applying the Priestley-Taylor equation at a regional scale. Hydrological Processes, 15(9), 1609–1620. Chari, M.M., Poozan, M.T. & Afrasiab, P. (2020). Modelling soil water infiltration variability using scaling. Biosystems Engineering, 196, 56-66. Chuanyan, Z., Zhongren, N., & Zhaodong, F. (2004) GIS-assisted spatially distributed modeling of the potential evapotranspiration in semiarid climate of the Chinese Loess Plateau. Journal of Arid Environments, 58,387– 403. Cristea, N., Kampf, S., & Burges, S. (2017). Revised Coefficients for Priestley-Taylor and Makkink-Hansen Equations for Estimating Daily Reference Evapotranspiration. Journal of Hydrology Engineering, 18,1289-1300. Daneshkar- Arasteh, P., & Tajrishy, M. (2008). Calibrating Priestley-Taylor model to estimate open water evaporation under regional advection using volume balance method—Case study: Chahnimeh Reservoir, Iran. Journal of Applied Sciences, 8(22), 4097–4104. Davies, J. A., & Allen, C.D. (1973). Equilibrium, potential and actual evaporation from cropped surfaces in southern Ontario. Journal of Applied Meteorology, 12(4), 649–657. De Bruin, H.A.R., & Holtslag, A.A.M. (1982). A simple parameterization of the surface fluxes of sensible and latent heat during daytime compared with the Penman-Monteith concept. Journal of Applied Meteorology, 21(11), 1610–1621. Didari S. & Ahmadi, S. (2019). Calibration and evaluation of the FAO56-Penman-Monteith, FAO24-radiation, and Priestly-Taylor reference evapotranspiration models using the spatially measured solar radiation across a large arid and semi-arid area in southern Iran. Theoretical and Applied Climatology, 136(1-2), 441-455. Eaton, A. K., Rouse, W. R., Lafleur, P. M., Marsh, P., & Blanken, P. D. (2001). Surface energy balance of the western and central Canadian sub arctic: Variations in the energy balance among five major terrain types. Journal of Climate, 14(17), 3692–3703. Ebrahimipak, N.A., Tafteh, A.,,Aslan Egdernezhad, A., Safoora Asadi Kapourchal, S. 2017. Determination of monthly evapotranspiration coefficients of winter wheat by different methods of estimating evapotranspiration and evaporation pan in Qazvin plain. Irrigation and water engineering, 8(4), 107-121. (In Persian) Fisher J B, DeBiase TA, Qi Y, Xu M, & Goldstein AH. (2005). Evapotranspiration models compared on a Sierra Nevada forest ecosystem. Environmental Modelling & Software, 20(6), 783–796. Flint, A. L., and Childs, S. W. (1991). Use of the Priestley–Taylor evaporation equation for soil water limited conditions in a small forest clearcut. Agricultural and Forest Meteorology, 56(3–4), 247–260. Gavin, H., & Agnew, C. A. (2004). Modelling actual, reference and equilibrium evaporation from a temperate wet grassland. Hydrological Processes, 18(2), 229–246. Ghobadi, A., Daneshkar Arasteh, P., & Khezri, S.M. (2017). Calibration of Priestley-Taylor coefficient in the estimation of evaporation from the free surface of water (case study: Mahabad dam reservoir). Ecogydrology, 4(3), 803-815. (In Persian) Gunston, H., & Batchelor, C. H. (1983). A comparison of the Priestley- Taylor and Penman methods for estimating reference crop evapotranspiration in tropical countries. Agricuture Water Management, 6(1), 65–77. Hobbins, M.T., Ramirez, JA., & Brown, TC. (2001). The complementary relationship in estimation of regional evapotranspiration: an enhanced advection-aridity model. Water Resource Research, 37,1389–1403. Irmak, S., Irmak, A., Allen, R. G., & Jones, J. W. (2003). Solar and net radiation-based equations to estimate reference evapotranspiration in humid climates. Journal Irrigation and Drainage Engeneering, 129(5), 336–347. Jensen, M. E., Burman, R. D., & Allen, R. G. (1990). Evapotranspiration and irrigation water requirements, ASCE Manuals and Reports on Engineering Practices No. 70, ASCE, New York. Jury, W. A., & Tanner, C. B. (1975). Advection modification of the Priestley and Taylor evapotranspiration formula. Agronomy Journal, 67(6), 840–842. Kahkhamoghadam. P. (2018). Evaluation of reference evapotranspiration models for warm arid climate (Case study: Zahedan station). Journal of Water and Soil Conservation, 25(1), 309-317. (In Persian) Kustas, W. P., Stannard, D. I., & Allwine, K. J. (1996). Variability in surface energy flux partitioning during Washita ‘92: Resulting effects on Penman-Monteith and Priestley-Taylor parameters. Agricultural and Forest Meteorology, 82(1–4), 171–193. Mehdizadeh, S, Saadatnejadgharahassanlou, H., & Behmanesh, J. (2017). Calibration of Hargreaves–Samani and Priestley–Taylor equations in estimating reference evapotranspiration in the Northwest of Iran. Archives of Agronomy and Soil Science, 63(7), 942-955. Mobilia, M. & Longobardi, A. 2021. Prediction of Potential and Actual Evapotranspiration Fluxes Using Six Meteorological Data-Based Approaches for a Range of Climate and Land Cover Types. ISPRS International Journal of Geo-Information, 10, 192. https://doi.org/10.3390/ijgi10030192. Mukammal, E. I., & Neumann, H. H. (1977). Application of the Priestley Taylor evaporation model to assess the influence of soil moisture on the evaporation from a large weighing lysimter and class A pan. Boundary-Layer Meteorology, 12(2), 243–256. Nikolaou, G. Neocleous, D. Kitta, E. & Katsoulas, N. 2023. Assessment of the Priestley-Taylor coefficient and a modified potential evapotranspiration model. Smart Agricultural Technology, https://doi.org/10.1016/j.atech.2022.100075. Pereira, A. R. (2004). The Priestley-Taylor parameter and the decoupling factor for estimating reference evapotranspiration. Agricultural and Forest Meteorology, 125(3–4), 305–313. Priestley, C.H.B., & Taylor. R.J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100(2):81–92. Price, J. S., Maloney, D. A., & Downey, F. G. (1991). Peatlands of the Lake Melville coastal plain, Labrador. Northern Hydrology Selected Perspectives: Proc., of the Northern Hydrology Symp., National Hydrology Research Institute, Saskatoon, SK, Canada, 293–302. Rojas, JP., Sheffield, RE. (2013). Evaluation of Daily Reference Evapotranspiration Methods as Compared with the ASCE-EWRI Penman-Monteith Equation Using Limited Weather Data in Northeast Louisiana. Journal Irrigation and Drainage Engeneering, 139 (4), 10.1061/(ASCE)IR.1943-4774.0000523 Rouse, W. R., Mills, P. F., & Stewart, R. B. (1977). Evaporation in high latitudes. Water Resource Research, 13(6), 909–914. Schramm, I., Boike, J., Bolton, W. R., & Hinzman, L. (2007). Application of TopoFlow, a spatially distributed hydrologic model to the Imnavait Creek Watershed, Alaska. Journal of Geophysical Research, 112(G4),G04S46. doi:10.1029/2006JG000326. Shuttleworth, W J. (1979). Calder IR. Has the Priestley-Taylor equation any relevance to forest evaporation? Journal of Applied Meteorology, 18(5), 639–646. Souch, C., Wolfe, C. P., & Grimmon, S. B. (1996). Wetland evaporation and energy partitioning: Indian Dunes National Lakeshore. Journal of Hydrology, 184(3–4), 189–208. Soylu, M. E., Istanbulluoglu, E., Lenters, J. D., and Wang, T. (2011). Quantifying the impact of groundwater depth on evapotranspitation in a semi-arid grassland region. Hydrology and Earth System Sciences, 15(3), 787–806. Stewart, R. B., & Rouse,W. R. (1976). A simple method for determining the evaporation for shallow lakes and ponds. Water Resource Research, 12(4), 623–628. Sun, S., Chen, H., Ju, W., Yu, M., Hua, W. & Yin, Y. (2014). On the attribution of the changing hydrological cycle in Poyang Lake Basin, China. Journal of Hydrology, 514, 214-225. Szilagyi, J. Parlange, M.B. & Katul, G.G. (2014). Assessment of the Priestley-Taylor parameter value from ERA-Interim global reanalysis data. Journal of Hydro-environment Research, 2 (1), 1–7. Tabari H, & Hosseinzadeh Talaee P. (2011). Local calibration of the Hargreaves and Priestley–Taylor equations for estimating reference evapotranspiration in arid and cold climates of Iran based on the Penman-Monteith model. Journal of Hydrologic Engineering, 16, 837–845. Wang, X., Melesse, A. M., & Yang, W. (2006). Influences of potential evapotranspiration estimation methods on SWAT’s hydrologic simulation in a northwestern Minnesota watershed. Transactions of the ASABE, 49(6), 1755–1771. Xu, C. Y., an& d Singh, V. P. (2002). Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland. Water Resource Management, 16(3), 197–219. Yoder, R. E., Odhiambo, L. O., & Wright, W. C. (2005). Evaluation of methods for estimating daily reference crop evapotranspiration at a site in the humid Southeast United States. Applied Engineering in Agriculture, 21(2), 197–202. Zhang, Y., Liu, C., Yu, Q., Shen, Y., Kendy, E., Kondoh, A., Tang, C., & Sun, H. (2004). Energy fluxes and the Priestley-Taylor parameter over winter wheat and maize in the North China Plain. Hydrological Processes, 18(12), 2235–2246. | ||
آمار تعداد مشاهده مقاله: 223 تعداد دریافت فایل اصل مقاله: 244 |