تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,097,883 |
تعداد دریافت فایل اصل مقاله | 97,205,510 |
Predicting gold grade by using support vector machine and neural network to generate an evidence layer for 3D prospectivity analysis | ||
International Journal of Mining and Geo-Engineering | ||
مقاله 10، دوره 57، شماره 4، اسفند 2023، صفحه 435-444 اصل مقاله (972.51 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/ijmge.2023.362951.595087 | ||
نویسندگان | ||
Kamran Mostafaei* 1؛ Shahoo Maleki2؛ Behshad Jodeiri Shokri3؛ Mahyar Yousefi4 | ||
1Department of Mining, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran. | ||
2Faculty of Mining Engineering, Amirkabir University of Technology, Tehran, Iran. | ||
3School of Engineering, University of Southern Queensland, Springfield Campus, Springfield, Australia. | ||
4Associate professor, Faculty of Engineering, Malayer University, Malayer, Iran . | ||
چکیده | ||
This paper uses support vector machine (SVM), back propagation neural network (BPNN), and Multivariate Regression Analysis (MLA) methods to predict the gold in the Dalli deposit situated in the central province of Iran. After analyzing the data, the dataset was prepared. Subsequently, through comprehensive statistical analyses, Au was chosen as the output element for modelling, while Cu, Al, Ca, Fe, Ti, and Zn were considered input parameters. Then, the dataset was divided into two groups: training and testing datasets. For this purpose, 70% of the datasets were randomly entered into the data process, while the remaining data were assigned for the testing stage. The correlation coefficients for SVM, BPNN, and MLA were 94%, 75%, and 68%, respectively. A comparison of these coefficients revealed that all used methods successfully predicted the actual grade of Au. However, the SVM was more reliable and accurate than other methods. Considering the sensitivity of the gold data and the small number in the exploratory database, the results of this research are used to prepare the main layer in the mineral prospectivity mapping (MPM) of gold in 2 and 3D. | ||
کلیدواژهها | ||
Gold grade estimation؛ Support vector machine؛ Back propagation neural network؛ Dalli deposit, Iran | ||
مراجع | ||
[1]. Mostafaei K, Ramazi H (2019). Mineral Resource estimation using a combination of drilling and IP-Rs data using statistical and cokriging methods. Bulletin of the mineral research and exploration, 160: 177-195. https://doi.org/10.19111/bulletinofmre 502794. [2]. Pwa A, Van-Moort JC (1999). Geochemical exploration using acid insoluble residues of rocks for volcanic-hosted massive sulphide deposits, Rosebery area, western Tasmania, Journal of Geochemical Exploration, 66: 55-69.
[3]. Yilmaz H (2003). Geochemical exploration for gold in western Turkey: success and failure, Journal of Geochemical Exploration, 80 (1): 117-135.
[4]. Abedi, M., Kashani, S. B. M., Norouzi, G. H., & Yousefi, M. (2017). A deposit scale mineral prospectivity analysis: A comparison of various knowledge-driven approaches for porphyry copper targeting in Seridune, Iran. Journal of African Earth Sciences, 128, 127-146. https://doi.org/10.1016/j.jafrearsci.2016.09.028
[5]. Chen, J., Yousefi, M., Zhao, Y., Zhang, C., Zhang, S., Mao, Z., ... & Han, R. (2019). Modelling ore-forming processes through a cosine similarity measure: Improved targeting of porphyry copper deposits in the Manzhouli belt, China. Ore Geology Reviews, 107, 108-118. https://doi.org/10.1016/j.oregeorev. 2019.02.006 [6]. Yousefi, M., Barak, S., Salimi, A., & Yousefi, S. (2023). Should Geochemical Indicators Be Integrated to Produce Enhanced Signatures of Mineral Deposits? A Discussion with Regard to Exploration Scale. Journal of Mining and Environment, 14(3), 1011-1018. https://doi.org/10.22044/jme.2023.13160.2398
[7]. Mcclenaghan MB, Thorleifson LH, DiLabio RNW (2000). Till geochemical and indicator mineral methods in mineral exploration, Ore Geology Reviews,16: 145-166.
[8]. Rahimi, H., Abedi, M., Yousefi, M., Bahroudi, A., & Elyasi, G. R. (2021). Supervised mineral exploration targeting and the challenges with the selection of deposit and non-deposit sites thereof. Applied Geochemistry, 128, 104940. https://doi.org/ 10.1016/j.apgeochem.2021.104940 [9]. Yousefi, M., & Hronsky, J. M. (2023). Translation of the function of hydrothermal mineralization-related focused fluid flux into a mappable exploration criterion for mineral exploration targeting. Applied Geochemistry, 149, 105561. https://doi.org/10.1016/j.apgeochem.2023.105561
[10]. Cheng Q (2000). Multifractal theory and geochemical element distribution pattern, Earth Sciences Journal China University Geosciences, 25(3): 311-318.
[11]. Wang Q, Deng J, Wan L (2007). Fractal analysis of element distribution in Damoqujia gold deposit, Shandong province, China. Proceedings of the 12th conference of the international association mathematical Geology, 8: 262-265.
[12]. Darabi-Golestan F, Ghavami-Riabi R, Asadi-Harooni H (2013). Alteration, zoning model, and mineralogical structure considering lithogeochemical investigation in Northern Dalli Cu-Au porphyry, Arabian Journal of Geosciences, 6: 4821-4831.
[13]. TaleshHosseni, S., Moradzadeh, A., & Asghari, O (2019). Application of GERT Network Planning in the Geostatistical Simulation Projects Management Structure–Case Study: Dali Cu-Au Porphyry Deposit. Journal of Mining Engineering, 14(42), 32-46.
[14]. Mahdiyanfar, H., & Seyedrahimi-Niaraq, M. (2023). Integration of Fractal and Multivariate Principal Component Models for Separating Pb-Zn Mineral Contaminated Areas. Journal of Mining and Environment, 14(3), 1019-1035.
[15]. Seyedrahimi-Niaraq, M., & Mahdiyanfar, H. (2021). Introducing a new approach of geochemical anomaly intensity index (GAII) for increasing the probability of exploration of shear zone gold mineralization. Geochemistry, 81(4), 125830.
[16]. Edgar, T. W., & Manz, D. O. (2017). Research methods for cyber security. Syngress.
[17]. Tolles, J., & Meurer, W. J. (2016). Logistic regression: relating patient characteristics to outcomes. Jama, 316(5), 533-534.
[18]. Doulati Ardejani F, Rooki R, Jodeiri Shokri B, Eslam Kish T, Aryafar A, Tourani P (2013). Prediction of rare earth elements in neutral alkaline mine drainage from Razi Coal Mine, Golestan Province, northeast Iran, using general regression neural network, Journal of Environmental Engineering, 139(6):896–907
[19]. Jodeiri Shokri B, Ramazi H, Doulati Ardejani F, Sadeghi Amirshahidi MH (2014). Prediction of pyrite oxidation in a coal washing waste pile applying artificial neural networks (ANNs) and adaptive neuro-fuzzy inference systems (ANFIS). Mine Water and the Environment 33: 146-156. https://doi.org/ 10.1007/s10230-013-0247-3 [20]. Chao Zh, Ma G, Zhang Y, Zhu Y, Hu H (2018). The application of artificial neural network in geotechnical engineering. IOP conferences series: Earth and environmental science 189 (2018) 022054. doi :10.1088/1755-1315/189/2/022054
[21]. Mostafaei K, Ramazi H (2019). Investigating the applicability of induced polarization method in ore modelling and drilling optimization: a case study from Abassabad, Iran. Near Surface Geophysics, 17:637-652. https://doi.org/10.1002/nsg.12055
[22]. Shakeri, J., Jodeiri Shokri, B., & Dehghani, H (2020). Prediction of blast-induced ground vibration using gene expression programming (GEP), artificial neural networks (ANNS), and linear multivariate regression (LMR). Archives of Mining Sciences, 65(2): 317-335. DOI 10.24425/ams.2020.133195
[23]. Lawal IA, Kown S (2021). Application of artificial intelligence to rock mechanics: An overview, Journal of Rock Mechanic and Geotechnical Engineering, 3(1):248-226.
[24]. Ramu Ch, Sunkara SL, Ramu R, Sain K (2021). An ANN-based identification of geological features using multi-attributes: a case study from Krishna-Godavari basin, India, Arabian Journal of Geosciences, 14(299): 1-10. https://doi.org/10.1007/s12517-021-06652-z.
[25]. Sohrabi, P., Jodeiri Shokri, B., & Dehghani, H (2021). Predicting coal price using time series methods and combination of radial basis function (RBF) neural network with time series. Mineral Economics, 1-10., https://doi.org/10.1007/s13563-021-00286-z
[26]. Shamsi, R., Amini, M. S., Dehghani, H., Bascompta, M., Jodeiri Shokri, B., Entezam, S (2022). Prediction of fly-rock using gene expression programming and teaching–learning-based optimization algorithm. Journal of Mining and Environment, 13(2): 391-406. doi:10.22044/jme.2022.11825.2171
[27]. Entezam, S., Jodeiri Shokri, B., Doulati Ardejani, S., Mirzaghorbanali, A., McDougall, K., Aziz, N (2022). Predicting pyrite oxidation process within coal waste piles using multiple linear regression (MLR) and teaching-learning-based optimization (TLBO) algorithm, 2022 Resource Operators Conference (ROC2022), University of Wollongong, Australia, 250-257.
[28]. Yu Hen H, Jenq-Neng H (2002). Handbook of neural network signal processing. CRC PRESS. 384p.
[29]. Chartiera S, Renaud P, Boukadoum M (2008). A nonlinear dynamic artificial neural network model of memory, New Ideas in Psychology, 26: 252-277. https://doi.org/10.1016/ j.newideapsych.2007.07.005 [30]. Kashani NM, Shahhosseini Sh (2010). A methodology for modeling batch reactors using generalized dynamic neural networks, Chemical Engineering Journal, 159: 195-202.
[31]. Martinez-Ramon M (2006). Support Vector Machines for Antenna Array Processing and Electromagnetic, Universidad Carlos III de Madrid, Spain, Morgan & Claypool, USA.
[32]. Steinwart I (2008). Support Vector Machines, Los Alamos National Laboratory, information Sciences Group (CCS-3), Springer Science+Business Media, LLC.
[33]. Abedi M, Norouzi Gh, Bahroudi A (2012). Support vector machine for multi-classification of mineral prospectivity areas, Computers & Geosciences, 46: 272-283. https://doi.org/10.1016/ j.cageo.2011.12.014 [34]. Deng Ch, Pan H, Fang S, Konate AA, Qin R (2017). support vector machine as an alternative method for lithology classification of crystalline rocks, Journal of Geophysics and Engineering, 14: 341-349. https://doi.org/10.1088/1742-2140/aa5b5b.
[35]. Mohammadi N, Hezarkhani A (2018). Application of support vector machine for the separation of mineralized zones in the Takht-e-Gonbad porphyry deposit, SE Iran, Journal of African earth Sciences, 143: 301-308. https://doi.org/10.1016/ j.jafrearsci.2018.02.005. [36]. Vural, A. (2019). Evaluation of soil geochemistry data of Canca Area (Gümüşhane, Turkey) by means of Inverse Distance Weighting (IDW) and Kriging methods-preliminary findings. Bulletin of the Mineral Research and Exploration, 158(158), 195-216.
[37]. Vural, A., & Aydal, D. (2020). Soil geochemistry study of the listvenite area of Ayvacik (Çanakkale, Turkey). Caspian Journal of Environmental Sciences, 18(3), 205-215.
[38]. Vural, A., & Cicek, B. (2022). Evaluation of Gumustug Antimonite (Torul, Gumushane/Turkiye) Mineralization with Soil Geochemistry and Multivariate Geostatistical Studies. Journal of Engineering Research and Applied Science, 11(2), 2156-2170.
[39]. Mostafaei, K., Maleki, Sh., Zamani, M.A.M., & Knez, D. (2022). Risk management prediction of mining and industrial projects by support vector machine. Resources Policy, 78, https://doi.org/10.1016/j.resourpol.2022.102819
[40]. Asadi H, Porwal A, Fatehi M, Kianpouryan S, Lu Y (2015). Exploration feature selection applied to hybrid data integration modeling: Targeting copper-gold potential in central Iran, Ore Geology Reviews, 71: 819-838. http://dx.doi.org/10.1016/j.oregeorev.2014.12.001.
[41]. Zarasvandi A, Rezaei M, Raith J, Lentz D, Azimzadeh A, Pourkaseb H (2015) Geochemistry and fluid characeristics of the Dalli porphyry Cu-Au deposit, Central, Iran, Journal of Asian earth sciences, 111: 175-191. https://doi.org/10.1016/j.jseaes.2015.07.029.
[42]. Darabi-Golestan F, Ghavami-Riabi R, Khalokakaie R, Asadi-Harooni H, Seyedrahimi-Nyaragh M (2013b) Interpretation of lithogeochemical and geophysical data to identify the buried mineralized area in Cu-Au porphyry of Dalli-Northern Hill, Arabian Journal Geosciences, 6: 4499-4509.
[43]. Zarasvandi, A., Asadi, F., Pourkaseb, H., Ahmadnejad, F., & Zamanian, H (2015). Hydrothermal Fluid evolution in the Dalli porphyry Cu-Au Deposit: Fluid Inclusion microthermometry studies. Journal of Economic Geology, 7(2), 277-306. doi: 10.22067/econg.v7i2.38447
[44]. Daneshjou, M., Zarasvandi, A., Pourkaseb, H., Rezaei, M., & Asadi Harooni, H. (2016). Investigation of effective factors in mineralization at Dalli porphyry Cu-Au deposit, Markazi province: base on geological, mineralogical and geochemical evidences. Petrological Journal, 7(28), 73-94. doi: 10.22108/ijp.2016.21231
[45]. Fatehi, M., & Asadi Haroni, H (2019). Geophysical signatures of the gold rich porphyry copper deposits: A case study at the Dalli Cu-Au porphyry deposit. Journal of Economic Geology, 10(2), 639-675. doi: 10.22067/econg.v10i2.69539
[46]. Hamidi MH, Asadiharooni H, Mokhtari AR (2011). Modeling and Reserve Evaluation of Dali Porphyry Copper - Gold Deposit using Concentration-Volume Fractal Method Markazi Province, Isfahan University of Technology, MSc Thesis.
[47]. Abe S (2005). Support Vector Machines for Pattern Classification. Kobe University, Kobe, Japan, Springer.
[48]. Quang-Anh T, Xing L, Haixin D (2005). Efficient performance estimate for one-class support vector machine, Pattern Recognition Letters, 26: 1174-1182.
[49]. Sánchez A, V. D (2003). Advanced support vector machines and kernel methods. Neurocomputing, 55(1-2), 5-20.
[50]. Te-Ming, H., Kecman, V., (2006). Kernel Based Algorithms for Mining Huge Data Sets, Faculty of Engineering the University of Auckland, Springer-Verlag Berlin Heidelberg.
[51]. Gholami, R., & Fakhari, N. (2017). Support vector machine: principles, parameters, and applications. In Handbook of neural computation (pp. 515-535). Academic Press.
[52]. Merler, S., & Jurman, G. (2006). Terminated ramp–support vector machines: a nonparametric data dependent kernel. Neural Networks, 19(10), 1597-1611.
[53]. Wang L. (2005). Support vector machines: theory and applications (Vol. 177). Springer Science & Business Media. 28p.
[54]. Bishop CM. (2006). Pattern Recognition and Machine Learning. Springer,758p.
[55]. Van Der Heijden, F., Duin, R. P., De Ridder, D., & Tax, D. M. (2005). Classification, parameter estimation and state estimation: an engineering approach using MATLAB. John Wiley & Sons.
[56]. Stefano, M., Giuseppe, J., (2006). Terminated Ramp-Support Vector Machines: A nonparametric data dependent kernel, Neural Networks, Vol: 19, p: 1597-1611.
[57]. John CP .(1998). Sequential Minimal Optimization: a Fast Algorithm for Training Support Vector Machines. MSRTR: Microsoft Research.
[58]. Rigol-Sanchez, J. P., Chica-Olmo, M., & Abarca-Hernandez, F. (2003). Artificial neural networks as a tool for mineral potential mapping with GIS. International Journal of Remote Sensing, 24(5), 1151-1156.
[59]. Da Silva, I. N., Hernane Spatti, D., Andrade Flauzino, R., Liboni, L. H. B., dos Reis Alves, S. F., da Silva, I. N., ... & dos Reis Alves, S. F (2017). Artificial neural network architectures and training processes (pp. 21-28). Springer International Publishing.
[60]. Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern Classification, Wiley. New York, 680.
[61]. Theodoridis, S., Pikrakis, A., Koutroumbas, K., & Cavouras, D. (2010). Introduction to pattern recognition: a matlab approach. Academic Press.
[62]. Blauberg IV, Sadovsky VN, Yudin EG (1977) ystem theory. Progress Publishers.
[63]. Han DW, Cluckie I. (2004). Support vector machines identification for runoff modelling. In Hydroinformatics: (In 2 Volumes, with CD-ROM) (pp. 1597-1604).
[64]. Granian, H., Tabatabaei, S. H., Asadi, H. H., & Carranza, E. J. M. (2015). Multivariate regression analysis of lithogeochemical data to model subsurface mineralization: a case study from the Sari Gunay epithermal gold deposit, NW Iran. Journal of Geochemical Exploration, 148, 249-258.
[65]. Talebi, H., Mueller, U., Tolosana-Delgado, R., & van den Boogaart, K. G. (2019). Geostatistical simulation of geochemical compositions in the presence of multiple geological units: application to mineral resource evaluation. Mathematical Geosciences, 51, 129-153. Abbass, A.A., Fidelis, I.K., & Shakarit, B.A. (2023). Interpreting the magnetic signatures and radiometric indicators within Kogi State, Nigeria for economic resources. Geosystems and Geoenvironment, 2(2), p.100157. | ||
آمار تعداد مشاهده مقاله: 464 تعداد دریافت فایل اصل مقاله: 233 |