تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,115,333 |
تعداد دریافت فایل اصل مقاله | 97,219,424 |
اثر کیفیت نور بر ویژگیهای مورفوفیزیولوژیک قلمه سه رقم داوودی در مرحله ریشهزایی (Chrysanthemum×grandiflorum) در اتاقک رشد | ||
علوم باغبانی ایران | ||
دوره 54، شماره 3، مهر 1402، صفحه 439-455 اصل مقاله (1.43 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijhs.2023.348301.2064 | ||
نویسندگان | ||
عزیزاله خندان میرکوهی* 1؛ شیوا پاکزاد1؛ محسن کافی2 | ||
1گروه مهندسی علوم باغبانی و فضای سبز، دانشکدگان کشاورزی و منابع طبیعی، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران | ||
2گروه مهندسی علوم باغبانی و فضای سبز، دانشکدگان کشاورزی و منابع طبیعی، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران. | ||
چکیده | ||
در این پژوهش کارایی لامپهای الایدی به عنوان جایگزین دیگر نورهای تکمیلی در شرایط مختلف، از نظر مرحله رشد هر گیاه و هدف از کشت، مورد بررسی قرار گرفت. آزمایش به صورت فاکتوریل در قالب طرح پایه کاملا تصادفی اجرا شد؛ عامل اول، قلمههای انتهایی سه رقم مختلف داوودی با کدهای (C1:440)، (C2:542) و (C3:567) و عامل دوم سطوح نوری L1، L2، L3، L4 به ترتیب بیانگر قرمز-آبی، قرمز، آبی و سفید بود. قلمههای تهیه شده درون گلدانهای دارای پرلیت شکری کشت شدند و به اتاقک رشد انتقال یافتند. در این بررسی، ویژگیهایی از جمله سطح و تعداد برگ، ویژگیهای ریشه و ساقه، میزان کلروفیل a، b و کل، شاخص عملکرد کوانتوم فتوسنتزی (Fv/Fm)، شاخص عملکرد، مالوندیآلدهائید، پرولین، آنتوسیانینهای برگ و کربوهیدراتهای محلول، اندازهگیری شد. بر اساس نتایج، بیشترین میزان محتوای کلروفیل کل گیاه در طیف ترکیبی قرمز-آبی مشاهده شد. بیشترین میزان شاخص عملکرد کوانتوم فتوسنتزی (Fv/Fm) در طیف آبی، حداکثر میزان آنتوسیانینهای برگ در رقم 440 در نور قرمز و کمترین مقدار مالون دیآلدهائید در رقم 542 در نور سفید مشاهده شد. بیشترین سطح برگ مربوط به رقم 567 تحت تیمار نور قرمز-آبی و بیشترین تعداد برگ در رقم 440 و نور قرمز-آبی ثبت شد. بهترین ویژگیهای ریشه مربوط به رقم 440 و نور ترکیبی قرمز-آبی بود. بطور کلی، با در نظر گرفتن شاخصهای فیزیولوژی و مورفولوژی، در بین نورهای الایدی استفاده شده برای ارقام مختلف، بهترین نور در شرایط اتاقک رشد ، نورهای قرمز-آبی و نور تک رنگ آبی، تشخیص داده شد. | ||
کلیدواژهها | ||
آنتوسیانین؛ الایدی؛ کلروفیل؛ گیاهان زینتی؛ عملکرد کوانتومی فتوسنتزی | ||
عنوان مقاله [English] | ||
The Effect of Light Quality on the Morphophysiological Characteristics of Cuttings of Three Varieties of Chrysanthemum in the Rooting Stage (Chrysanthemum grandiflorum) in the Growth Chamber | ||
نویسندگان [English] | ||
Azizollah Khandan-Mirkohi1؛ Shiva Pakzad1؛ Mohsen Kafi2 | ||
1Department of Horticultural Science and Landscape Engineering, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
2Department of Horticultural Science and Landscape Engineering, Faculty of Agriculture, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
چکیده [English] | ||
The effectiveness of LED lamps was evaluated as an alternative to other supplementary lights in different conditions in terms of the growth stage of each plant and the purpose of the cultivation. A factorial experiment was carried out based on completely randomized design. The first factor was the terminal cuttings of three different cultivars of chrysanthemum, given codes of (C1:440), (C2:542) and (C3:567) and the second factor was the light levels of L1, L2, L3 and L4 which represent red-blue, red, blue and white, respectively. Cuttings were planted in the pots filled with small sized perlite, then transferred to the growth chamber. Characteristics such as leaf surface and number, root and stem characteristics, chlorophyll a and b and total, photosynthetic quantum performance index (Fv/Fm), PIabs, malondialdehyde, proline, leaf anthocyanins and soluble carbohydrates were measured. Based on the results, the highest amount of total chlorophyll content was observed in the red-blue combined spectrum, the highest amount of photosynthetic quantum performance index (Fv/Fm) in C1 cultivar under the blue spectra, the maximum amount of leaf anthocyanins in C1 under red light and the lowest amount of malondialdehyde in C2 under the white light. Meanwhile, the maximum value of leaf area was related to C3 under red-blue light treatment and the maximum number of leaves to C1 under red-blue light. The best characteristics of the root were belonged to the C1 cultivar under combined red-blue light. As a result, in terms of physiological and morphological indicators, among the used LED lights, red-blue lights and monochromatic blue light were the best treatments in the growth chamber conditions. | ||
کلیدواژهها [English] | ||
Anthocyanin, LED, Chlorophyll, Ornamental plants, Photosynthetic quantum function | ||
مراجع | ||
غفاری، ح. و تدین، م. (1397). اثر محلول پاشی جاسمونیک اسید بر کارایی مصرف نور و تجمع ماده خشک چغندرقند (Beta vulgaris L.) تحت شرایط کم آبی. تولیدات گیاهی (مجله علمی کشاورزی)، 41(4 )، 124-111. Ajdanian, L., Babaei, M. & Aroiee, H. (2019). The growth and development of cress (Lepidium sativum) affected by blue and red light. Heliyon, 5(7). https://doi.org/10.1016/j.heliyon.2019.e02109. Aliniaeifard, S., Seif, M., Arab, M., Zare Mehrjerdi, M., Li, T. & Lastochkina, O. (2018). Growth and photosynthetic performance of Calendula officinalis under monochromatic red light. International Journal of Horticultural Science and Technology, 5(1), 123-132. Amini, S., Ghobadi, C. & Yamchi, A. (2015). Proline accumulation and osmotic stress: an overview of P5CS gene in plants. Journal of Plant Molecular Breeding, 3(2), 44-55. Anderson, N. O. (2007). Prevention of invasiveness in floricultural crops. In Anderson, N.O. (eds) Flower breeding and genetics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4428-1_6 Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1), 1. Bates, L. S., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. Bayat, L., Arab, M., Aliniaeifard, S., Seif, M., Lastochkina, O. & Li, T. (2018). Effects of growth under different light spectra on the subsequent high light tolerance in rose plants. AoB Plants, 10(5), ply052. Bourget, C. M. (2008). An introduction to light-emitting diodes. Scientia Horticulturae, 43(7), 1944-1946. Carvalho, S. D., Schwieterman, M. L., Abrahan, C. E., Colquhoun, T. A. & Folta, K. M. (2016). Light quality dependent changes in morphology, antioxidant capacity, and volatile production in sweet basil (Ocimum basilicum). Frontiers in Plant Science, 7, 1328. Colquhoun, T. A., Schwieterman, M. L., Gilbert, J. L., Jaworski, E. A., Langer, K. M., Jones, C. R. & Folta, K. M. (2013). Light modulation of volatile organic compounds from petunia flowers and select fruits. Postharvest Biology and Technology, 86, 37-44. Dewir, Y. H., El-Mahrouk, M. E. S., Al-Shmgani, H. S., Rihan, H. Z., Teixeira da Silva, J. A. & Fuller, M. P. (2015). Photosynthetic and biochemical characterization of in vitro-derived African violet (Saintpaulia ionantha H. Wendl) plants to ex vitro conditions. Journal of Plant Interactions, 10(1), 101-108. Dierck, R., Dhooghe, E., Van Huylenbroeck, J., Van Der Straeten, D. & De Keyser, E. (2017). Light quality regulates plant architecture in different genotypes of Chrysanthemum morifolium Ramat. Scientia Horticulturae, 218, 177-186. Fukuda, N., Ajima, C., Yukawa, T. & Olsen, J. E. (2016). Antagonistic action of blue and red light on shoot elongation in petunia depends on gibberellin, but the effects on flowering are not generally linked to gibberellin. Environmental and Experimental Botany, 121, 102-111. Ghafari, H., & Tadayon, M. R. (2019). Impact of jasmonic acid on radiation use efficiency and dry biomasses of sugar beet (Beta vulgaris L.) under water deficit conditions. Plant Productions, 41(4), 11-124. )In Persian( Gupta, S. D. & Dutta Agarwal, A. (2017). Light Emitting Diodes for Agriculture. Springer: Singapore, 75 (12), 245-263. He, D., Kozai, T., Niu, G., Zhang, X. (2019). Light-Emitting Diodes for Horticulture. In Li, J., Zhang, G.Q. (eds) Light-Emitting Diodes. Solid State Lighting Technology and Application Series, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-99211-2_14 Hogewoning, S. W., Trouwborst, G., Maljaars, H., Poorter, H., van Ieperen, W. & Harbinson, J. (2010). Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany, 61(11), 3107-3117. Hosseini, A., Mehrjerdi, M. Z., Aliniaeifard, S. & Seif, M. (2019). Photosynthetic and growth responses of green and purple basil plants under different spectral compositions. Physiology and Molecular Biology of Plants, 25(3), 741-752. Irigoyen, J. J., Einerich, D. W. & Sánchez‐Díaz, M. (1992). Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiologia Plantarum, 84(1), 55-60. Jeong, S. W., Hogewoning, S. W. & van Ieperen, W. (2014). Responses of supplemental blue light on flowering and stem extension growth of cut chrysanthemum. Scientia Horticulturae, 165, 69-74. Kalaji, H. M., Carpentier, R., Allakhverdiev, S. I. & Bosa, K. (2012). Fluorescence parameters as early indicators of light stress in barley. Journal of Photo Chemistry and Photobiology B: Biology, 112, 1-6. Kilic, S., Karatas, A., Cavusoglu, K., Unlu, H., Unlu, H. O. & Padem, H. (2010). Effects of different light treatments on the stomata movements of tomato (Lycopersicon esculentum Mill. cv. Joker) seedlings. Journal of Animal and Veterinary Advances, 9(1), 131-135. Kim, S. J., Hahn, E. J., Heo, J. W. & Paek, K. Y. (2004). Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae, 101(1-2), 143-151. Kozai, T. (2016). Why LED lighting for urban agriculture? In: Kozai, T., Fujiwara, K., Runkle, E.S. (eds) LED lighting for urban agriculture. Springer, Singapore. 3-18. Kozai, T. D., Catt, K., Du, Z., Na, K., Srivannavit, O., Razi-ul, M. H. & Cui, X. T. (2015). Chronic in vivo evaluation of PEDOT/CNT for stable neural recordings. IEEE transactions on biomedical engineering, 63(1), 111-119. Landi, M., Tattini, M. & Gould, K. S. (2015). Multiple functional roles of anthocyanins in plant-environment interactions. Environmental and Experimental Botany, 119, 4-17. Li, Y., Xin, G., Shi, Q., Yang, F. & Wei, M. (2023). Response of photomorphogenesis and photosynthetic properties of sweet pepper seedlings exposed to mixed red and blue light. Frontiers in Plant Science, 13,984051. doi: 10.3389/fpls.2022.984051. Lin, K. H., Huang, M. Y., Huang, W. D., Hsu, M. H., Yang, Z. W. & Yang, C. M. (2013). The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae, 150, 86-91. Lin, K., Huang, Z. & Xu, Y. (2018). Influence of light quality and intensity on biomass and biochemical contents of hydroponically grown lettuce. HortScience, 53(8), 1157-1163. Mengxi, L., Zhigang, X., Yang, Y. & Yijie, F. (2011). Effects of different spectral lights on Oncidium PLBs induction, proliferation, and plant regeneration. Plant Cell, Tissue and Organ Culture (PCTOC), 106(1), 1-10. Ouzounis, T., Fretté, X., Rosenqvist, E. & Ottosen, C. O. (2014). Spectral effects of supplementary lighting on the secondary metabolites in roses, chrysanthemums, and campanulas. Journal of Plant Physiology, 171(16), 1491-1499. Pawłowska, B., Żupnik, M., Szewczyk-Taranek, B. & Cioc, M. (2018). Impact of LED light sources on morphogenesis and levels of photosynthetic pigments in Gerbera jamesonii grown in vitro. Horticulture, Environment, and Biotechnology, 59(1), 115-123. Riikonen, J., Kettunen, N., Gritsevich, M., Hakala, T., Sarkka, L. & Tahvonen, R. (2016). Growth and development of Norway spruce and Scots pine seedlings under different light spectra. Environmental and Experimental Botany, 121, 112-120. Shao, Q., Wang, H., Guo, H., Zhou, A., Huang, Y., Sun, Y. & Li, M. (2014). Effects of shade treatments on photosynthetic characteristics, chloroplast ultrastructure, and physiology of Anoectochilus roxburghii. PloS one, 9(2), e85996. Stewart, R. R. & Bewley, J. D. (1980). Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology, 65(2), 245-248. Strasser, R. J., Srivastava, A. & Tsimilli-Michael, M. (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples. Probing Photosynthesis: Mechanisms, Regulation and Adaptation, 445-483. Valentovic, P., Luxova, M., Kolarovic, L. & Gasparikova, O. (2006). Effect of osmotic stress on compatible solutes content, membrane stability and water relations in two maize cultivars. Plant Soil and Environment, 52(4), 186-191. Wagner, G. J. (1979). Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiology, 64(1), 88-93. Xiao, L., Shibuya, T., Kato, K., Nishiyama, M. & Kanayama, Y. (2022). Effects of light quality on plant development and fruit metabolism and their regulation by plant growth regulators in tomato. Scientia Horticulturae, 300, 111076. doi: 10.1016/ 2022.111076 Yu, W., Liu, Y., Song, L., Jacobs, D. F., Du, X., Ying, Y. & Wu, J. (2017). Effect of differential light quality on morphology, photosynthesis, and antioxidant enzyme activity in Camptotheca acuminata seedlings. Journal of Plant Growth Regulation, 36(1), 148-160. Zheng, L. & Van Labeke, M. C. (2017). Chrysanthemum morphology, photosynthetic efficiency and antioxidant capacity are differentially modified by light quality. Journal of Plant Physiology, 213, 66-7. | ||
آمار تعداد مشاهده مقاله: 134 تعداد دریافت فایل اصل مقاله: 232 |