تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,115,512 |
تعداد دریافت فایل اصل مقاله | 97,219,677 |
مطالعه پاسخهای تعدادی از ژنوتیپهای پایه آلو به تنش شوری ناشی از کلرید سدیم | ||
علوم باغبانی ایران | ||
دوره 54، شماره 3، مهر 1402، صفحه 513-534 اصل مقاله (1.46 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijhs.2023.361935.2114 | ||
نویسندگان | ||
مریم عبادی1؛ محمدرضا فتاحی مقدم* 2؛ ذبیح اله زمانی1؛ علی عبادی1 | ||
1گروه مهندسی علوم باغبانی و فضای سبز، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران | ||
2گروه مهندسی علوم باغبانی و فضای سبز، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران. | ||
چکیده | ||
تنش شوری با تاثیر منفی بر رشد و متابولیسم گیاه منجر به کاهش عملکرد میشود. بنابراین، شناخت مکانیسمهای تحمل به شوری میتواند راه حلی مفید برای به حداقل رساندن اثرات مخرب شوری باشد. پژوهش حاضر به صورت آزمایش گلدانی خارج از گلخانه برای بررسی پاسخهای تعداد هشت ژنوتیپ آلو (Prunus cerasifera) به غلظتهای مختلف کلرید سدیم (صفر، 40 و 80 میلیمولار) به صورت فاکتوریل (فاکتورها شامل ژنوتیپ و غلظت شوری) در قالب طرح بلوکهای کامل تصادفی انجام شد. در غلظت 80 میلیمولار کلرید سدیم نسبت به شاهد کاهش 28-5 درصدی سطح برگ، 41-13 درصدی ماده خشک کل، 6/21-7/18 درصدی شدت فلورسانس کلروفیل، 7/49-7/30 درصدی میزان کلروفیل کل و 5/46-3/22 درصدی میزان کارتنوئیدها و افزایش 72-6/28 درصدی میزان سدیم شاخساره، 8/33-3/11 درصدی نشت یونی، 44-17 درصدی فلاونوییدهای برگ، 7/47-2/5 درصدی فلاونوئیدهای ریشه و 2/30-6/9 درصدی فعالیت آنزیم پلی فنل اکسیداز مشاهده گردید. در برخی ژنوتیپها افزایش غیر معنیدار 8/8-4/2 درصدی و در بقیه ژنوتیپها کاهش 7/21-3/13 درصدی میزان پتاسیم شاخساره مشاهده شد. نسبتهای پتاسیم به سدیم شاخساره (3/5-4)، سدیم شاخساره به ریشه (5/2-1) و پتاسیم شاخساره به ریشه (2/8-9/4) در گیاهان شاهد به ترتیب به 4-9/0، 15/8-4/1 و 5/12-6/7 در تیمار 80 میلیمولار کلرید سدیم رسیدند. محتوای پروتئین کل در برخی ژنوتیپها افزایش 2/14-11 درصدی و در بقیه کاهش 13-7 درصدی داشتند. همه ژنوتیپها تحت تنش شوری کاهش رشد و آسیب به دستگاه فتوسنتزی را نشان دادند، اما در میزان پاسخ به سایر ویژگیها متفاوت بودند. در پژوهش حاضر، ژنوتیپهای UTPR1 و UTPR5 به ترتیب به عنوان حساسترین و متحملترین ژنوتیپ شناخته شدند. | ||
کلیدواژهها | ||
فعالیت پلی فنل اکسیداز؛ محتوای پروتئین کل؛ محتوای فلاونوئیدها؛ میزان عناصر سدیم و پتاسیم؛ نشت یونی | ||
عنوان مقاله [English] | ||
Study the Responses of Some Plum Rootstock Genotypes to NaCl Salinity Stress | ||
نویسندگان [English] | ||
Maryam Ebadi1؛ Reza Fatahi2؛ Zabihollah Zamani1؛ Ali Ebadi1 | ||
1Department of Horticultural Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
2Department of Horticultural Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
چکیده [English] | ||
Salinity has a negative effect on plant growth and metabolism that results in reducing yield. So, understanding the mechanisms of salinity tolerant is a valuable tool for alleviating the destructive impacts of salinity. This research was conducted as a pot-plant outdoor experiment to investigate the responses of eight different plum (Prunus cerasifera) genotypes to different concentrations of NaCl (0, 40, and 80 mM) in a factorial experiment (genotype × salinity concentration) based on a randomized complete block design. The concentration of 80 mM NaCl compared to control caused a decrease in the leaf area (5-28%), total dry matter (13-41%), chlorophyll fluorescence (Fv/Fm) (18.7-21.6%), total chlorophyll content (30.7-49.7%) and Carotenoids content (22.3-46.5%) and an increase in the shoot Na+ content (28.6-72%), ion leakage (11.3-33.8%), leaf flavonoids content (17-44%), root flavonoids content (5.2-47.7%) and PPO activity (9.6-30.2%). In some genotypes, there was a non-significant increase (2.4-8.8%) in shoot K+ content, while there was a decrease (13.3-21.7%) in others. The shoot K+/Na+ (4-5.3), Na+ content (shoot/root) (1-2.5%) and K+ content (shoot/root) (4.9-8.2) in the control plants, respectively, reached 0.9-4, 1.4-8.15 and 7.6-12.5 in the treatment of 80 mM NaCl. Total protein content in some genotypes showed an increase of 11-14.2% and in others it showed a decrease of 7-13%. All genotypes experienced a decrease in growth and damage to their photosynthetic apparatus when exposed to salinity stress, but they displayed differences in the response rate to other traits. In this study, Genotypes UTPR1 and UTPR5 were recognized as the most sensitive and tolerant, respectively. | ||
کلیدواژهها [English] | ||
PPO activity, Total protein content, Flavonoids content, Na+ and K+ content, Electrolyt leakage | ||
مراجع | ||
اتحادپور، مرضیه؛ فتاحی مقدم، محمدرضا؛ زمانی، ذبیحاله؛ گلعین، بهروز و نقوی، محمدرضا (1398). بررسی اثر تنش شوری بر برخی صفات فیزیولوژیک دانهالهای برگزیده مرکبات و شناسایی ژنوتیپهای متحمل. مجله علوم باغبانی ایران، 50(2)، 421-433. غلامی، مهدیه و راحمی، مجید (1388). بررسی اثرات تنش شوری کلرید سدیم بر خصوصیات فیزیولوژیکی و مورفولوژیکی پایه رویشی هیبرید هلو-بادام (GF677). نشریه فن آوری تولیدات گیاهی، 9(1)، 21-31. محبی، مینا؛ بابالار، مصباح؛ فتاحی مقدم، محمدرضا و عسکری، محمد علی (1400). تاثیر پتاسیم و کلسیم بر خصوصیات رویشی و تعادل یونی نهالهای پیوندی سیب روی پایههای پاکوتاه کننده تحت تنش شوری. مجله علوم باغبانی ایران، 52(2)، 429-446. مومنی، عزیز (1389). پراکنش جغرافیایی و سطوح شوری منابع خاک ایران. مجله پژوهشهای خاک (علوم خاک و آب)، 24(3)، 203-215. REFERENCES AbdElgawad, H., Zinta, G., Hegab, M. M., Pandey, R., Asard, H., & Abuelsoud, W. (2016). High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in Plant Science, 7, 276. https://doi.org/10.3389/fpls.2016.00276. Acharya, B. R., Sandhu, D., Duenas, C., Duenas, M., Pudussery, M., Kaundal, A., Ferreira, J. F. S., Suarez, D.L. & Skaggs, T. H. (2022). Morphological, physiological, biochemical, and transcriptome studies reveal the importance of transporters and stress signaling pathways during salinity stress in Prunus. Scientific Reports, 12(1), 1274. https://doi.org/10.1038/s41598-022-05202-1. Ahmed, I. M., Dai, H., Zheng, W., Cao, F., Zhang, G., Sun, D., & Wu, F. (2013). Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiology and Biochemistry, 63, 49–60. https://doi.org/10.1016/j.plaphy.2012.11.004. Ashraf, M., & Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51(2), 163-190. https://doi.org/10.1007/s11099-013-0021-6. Beacham, A. M., Hand, P., Pink, D. A., & Monaghan, J. M. (2017). Analysis of Brassica oleracea early stage abiotic stress responses reveals tolerance in multiple crop types and for multiple sources of stress. Journal of the Science and Food in Agriculture, 97, 5271–5277. https://doi.org/10.1002/jsfa.8411. Birhanie, Z. M., Yang, D., Luan, M., Xiao, A., Liu, L., Zhang, C., Biswas, A., Dey, S., Deng, Y., & Li, D. (2022). Salt stress induces changes in physiological characteristics, bioactive constituents, and antioxidants in kenaf (Hibiscus cannabinus L.). Antioxidants, 11(10), 2005. Bolat, I., Kaya, C., Almaca, A., & Timucin, S. (2006). Calcium sulfate improves salinity tolerance in rootstocks of plum. Journal of Plant Nutrition, 29(3), 553–564. https://doi.org/10.1080/01904160500526717. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3. Datta, U., & Chakroboarty, K. (2018). Fast and accurate method for estimation of leaf area index by image processing system: An innovative concept. The Pharma Innovation Journal, 7(8), 401-404. Erturk, U., Sivritepe, N., Yerlikaya, C., Bor, M., Ozdemir, F., & Turkan, I. (2007). Responses of the cherry rootstock to salinity in vitro. Biologia plantarum, 51, 597-600. https://doi.org/10.1007/s10535-007-0132-7. Etehadpour, M., Fatahi Moghadam, R., Zamani, Z., Golein, B., & Naghavi, M. R. (2019). Effect of salinity stress on some physiological traits of selected citrus seedlings and identification of tolerant genotypes. Iranian Journal of Horticultural Science, 50(2), 421-433. doi: 10.22059/ijhs.2018.253957.1417. (In Persian). Gengmao, Z., Yu, H., Xing, S., Shihui, L., Quanmei, S., & Changhai, W. (2014). Salinity stress increases secondary metabolites and enzyme activity in safflower. Industrial Crops and Products, 64, 175-181. http://dx.doi.org/10.1016/j.indcrop.2014.10.058. Gholami, M., & Rahemi, M. (2009). Effect of NaCl salt stress on physiological and morphological characteristics of vegetative peach-almond hybrid (GF677) rootstock. Plant Production Technology, 9(1), 21-31. (In Persian). Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016. Gonzalez, E. M., de Ancos, B., & Cano, M. P. (1999). Partial characterization of polyphenol oxidase activity in raspberry fruits. Journal of Agricultural and Food Chemistry, 47(10), 4068-4072. https://doi.org/10.1021/jf981325q. Guo, X., Ahmad, N., Zhao, S., Zhao, C., Zhong, W., Wang, X., & Li, G. (2022). Effect of salt stress on growth and physiological properties of Asparagus seedlings. Plants, 11(21), 2836. https://doi.org/10.3390/plants11212836. Hao, S., Wang, Y., Yan, Y., Liu, Y., Wang, J., & Chen, S. (2021). A review on plant responses to salt stress and their mechanisms of salt resistance. Horticulturae, 7(6), 132. https://doi.org/10.3390/horticulturae7060132. Hasanuzzaman, M., Bhuyan, M. H. M., Zulfiqar, F., Raza, A., Mohsin, S., Mahmud, J., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9, 681. https://doi.org/10.3390/antiox9080681. Hoffman, G. J., Catlin, P. B., Mead, R. M., Johnson, R. S., Francois L. E., & Goldhamer, D. (1989). Yield and foliar injury responses of mature plum trees to salinity. Irrigation Science, 10(3), 215-229. https://doi.org/10.1007/BF00257954. Jung, S. (2004). Variation in antioxidant metabolism of young and mature leaves of Arabidopsis thaliana subjected to drought. Plant Science, 166, 459-466. https://doi.org/10.1016/j.plantsci.2003.10.012. Kamran, M., Xie, K., Sun, J., Wang, D., Shi, C., Lu, Y., Gu, W., & Xu, P. (2020). Modulation of growth performance and coordinated induction of ascorbate-glutathione and methylglyoxal detoxification systems by salicylic acid mitigates salt toxicity in choysum (Brassica parachinensis L.). Ecotoxicology and Environmental safety. 188, 109877. https://doi.org/10.1016/j.ecoenv.2019.109877. Kchaou, H., Larbi, A., Gargouri, K., Chaieb, M., Morales, F., & Msallem, M. (2010). Assessment of tolerance to NaCl salinity of five olive cultivars, based on growth characteristics and Na+ and Cl− exclusion mechanisms. Scientia Horticulturae, 124(3), 306-315. https://doi.org/10.1016/j.scienta.2010.01.007. Liu, C., Zhao, X., Yan, J., Yuan, Z., & Gu, M. (2020). Effects of salt stress on growth, photosynthesis, and mineral nutrients of 18 pomegranate (Punica granatum) cultivars. Agronomy, 10(1), 27. https://doi.org/10.3390/agronomy10010027. Lutts, S., Majerus, V., & Kinet, J. M. (1999). NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiologia Plantarum, 105(3), 450-458. https://doi.org/10.1034/j.1399-3054.1999.105309.x. Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence – A practical guide. Journal of Experimental Botany, 51, 659–668. https://doi.org/10.1093/jexbot/51.345.659. Moameni, A. (2009). Geographical distribution and salinity levels of soil resources of Iran. Iranian Journal of Soil Research, 24(3), 203-215. doi: 10.22092/IJSR.2011.126633. (In Persian). Mohebi, M., Babalar, M., Fattahi Moghadam, M. R., & Askary, M. A. (2021). Effects of potassium and calcium on vegetative growth and mineral balance of apple tree grafted on dwarfing rootstocks, under salinity stress. Iranian Journal of Horticultural Science, 52(2), 429-446. doi: 10.22059/ijhs.2018.253336.1410. (In Persian). Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell and Environment, 25(2), 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x. Munns, R. (2005). Genes and salt tolerance: Bringing them together. New Phytologist, 167, 645-663. https://doi.org/10.1111/j.1469-8137.2005.01487.x. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911. Munns, R., James, R. A., & Lauchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57(5), 1025-1043. https://doi.org/10.1093/jxb/erj100. Ottman, Y., & Byrne, D. H. (1988). Screening rootstocks of Prunus for relative salt tolerance. Horticultural Science, 23(2), 375 -378. https://doi.org/10.21273/HORTSCI.23.2.375. Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: A review. Environmental Science and Pollution Research, 22, 4056-4075. https://doi.org/10.1007/s11356-014-3739-1. Parvaiz, A., & Satyawati, S. (2008). Salt stress and phyto-biochemical responses of plants-A review. Plant Soil and Environment, 54(3), 89. https://doi.org/10.17221/2774-PSE. Rahneshan, Z., Nasibi, F., & Moghadam, A. A. (2018). Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L.) rootstocks. Journal of Plant Interactions, 13(1), 73-82. https://doi.org/10.1080/17429145.2018.1424355. Ranjbarfordoei, A., Samson, R., & Van Damme, P. (2006). Chlorophyll fluorescence performance of sweet almond [Prunus dulcis (Miller) D. Webb] in response to salinity stress induced by NaCl. Photosynthetica, 44, 513-522. https://doi.org/10.1007/s11099-006-0064-z. Regni, L., Del Pino, A. M., Mousavi, S., Palmerini, C. A., Baldoni, L., Mariotti, R., Mairech, H., Gardi, T., DʹAmato, R., & Proietti, P. (2019). Behavior of four olive cultivars during salt stress. Frontiers in plant science, 10, 867. https://doi.org/10.3389/fpls.2019.00867. Rieger, M. (2001). Salt stress resistance of peach and four North American prunus species. In VII International Symposium on Orchard and Plantation Systems, Acta Horticulturae. 557, 181-19. https://doi.org/10.17660/ActaHortic.2001.557.24. Rohacek, K. (2002). Chlorophyll fluorescence parameters: The definitions, photosynthetic meaning, and mutual relationships. Photosynthetica, 40, 13-29. https://doi.org/10.1023/A:1020125719386. Sarker, U., & Oba, S. (2020). The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Frontiers in Plant Science, 11, 559876. https://doi.org/10.3389/fpls.2020.559876. Shabala, S., Cuin, T. A., Pang, J., Percey, W., Chen, Z., Conn, S., Eing, C., & Wegner, L. H. (2010). Xylem ionic relations and salinity tolerance in barley. The Plant Journal, 61, 839–853. https://doi.org/10.1111/j.1365-313X.2009.04110.x. Singh, A., Sharma, D., Kumar, R., Kumar, A., Yadav, R., & Gupta, S. (2018). Soil salinity management in fruit crops: A review of options and challenges. In S.K., Gupta, M.R., Goyal & A., Singh (Eds), Engineering Practices for Management of Soil Salinity, CRC Press. Sorkheh, K., Shiran, B., Rouhi, V., Khodambashi, M., & Sofo, A. (2012). Salt stress induction of some key antioxidant enzymes and metabolites in eight Iranian wild almond species. Acta Physiologiae Plantarum, 34, 203-213. https://doi.org/10.1007/s11738-011-0819-4. Su, S., Zhou, Y., Qin, J. G., Yao, W., & Ma, Z. (2010). Optimization of the method for chlorophyll extraction in aquatic plants. Journal of Freshwater Ecology, 25(4), 531-538. https://doi.org/10.1080/02705060.2010.9664402. Tejera, N. A., Soussi, M., & Lluch, C. (2006). Physiological and nutritional indicators of tolerance to salinity in chickpea plants growing under symbiotic conditions. Environmental and Experimental Botany, 58(1-3), 17–24. https://doi.org/10.1016/j.envexpbot.2005.06.007. Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91, 503–527. https://doi.org/10.1093/aob/mcg058. Toro, G., Pimentel, P., & Salvatierra, A. (2021). Effective categorization of tolerance to salt stress through clustering prunus rootstocks according to their physiological performances. Horticulturae, 7(12), 542. https://doi.org/10.3390/horticulturae7120542. Tristantini, D., & Amalia, R. (2019). Quercetin concentration and total flavonoid content of anti-atherosclerotic herbs using aluminum chloride colorimetric assay. AIP Conference Proceedings, 2193(1), 030012. https://doi.org/10.1063/1.5139349. Weisany, W., Sohrabi, Y., Heidari, G., Siosemardeh, A., & Ghassemi-Golezani, K. (2012). Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics, 5(2), 60-67. https://search.informit.org/doi/10.3316/informit.182984019960534. Yin, R., Bai, T., Ma, F., Wang, X., Li, Y., & Yue, Z. (2010). Physiological responses and relative tolerance by Chinese apple rootstocks to NaCl stress. Scientia Horticulturae, 126(2), 247-252. https://doi.org/10.1016/j.scienta.2010.07.027. Yokoi, S., Bressan, R. A., & Hasegawa, P. M. (2002). Salt stress tolerance of plants. Japan International Research Center for Agricultural Sciences working report, 23(1): 25-33. Zhang, H. B., & Xu, D. Q. (2003). Role of light-harvesting complex II dissociation in protecting the photosystem II reaction centres against photodamage in soybean leaves and thylakoids. Photosynthetica, 41, 383-391. https://doi.org/10.1023/B:PHOT.0000015462.71601.d7. Zhao, C., Zhang, H., Song, C., Zhu, J. K., & Shabala, S. (2020). Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 1(1), 100017. https://doi.org/10.1016/j.xinn.2020.100017. | ||
آمار تعداد مشاهده مقاله: 148 تعداد دریافت فایل اصل مقاله: 218 |