
تعداد نشریات | 162 |
تعداد شمارهها | 6,692 |
تعداد مقالات | 72,232 |
تعداد مشاهده مقاله | 129,192,246 |
تعداد دریافت فایل اصل مقاله | 102,023,343 |
اثر محلولپاشی کیتوزان بر فیزیولوژی تحمل به سرما و زمان شکفتن جوانه در انگور یاقوتی | ||
علوم باغبانی ایران | ||
دوره 55، شماره 4، دی 1403، صفحه 555-576 اصل مقاله (1.42 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijhs.2024.374052.2164 | ||
نویسندگان | ||
حسین صفامنش؛ روح الله کریمی* | ||
گروه علوم باغبانی و فضای سبز، دانشکده کشاورزی، دانشگاه ملایر، ملایر، ایران | ||
چکیده | ||
پژوهش حاضر با هدف بررسی اثر محلولپاشی کیتوزان (غلظتهای صفر ، 5، 10 و 20 گرم در لیتر) در مرحله نوکپنبهای (اواخر اسفند) بر زمان شکفتن جوانه و شاخصهای فیزیولوژیکی مرتبط با تحمل به سرمای بهاره انگور یاقوتی در سالهای 1400 و 1401 انجام گرفت. بر اساس نتایج شکفتن جوانه در تاکهای تیمار شده با غلظت 10 گرم در لیتر در مقایسه با تاکهای شاهد تا 6 روز به تاخیر افتاد. کاربرد کیتوزان به ویژه غلظت 20 گرم در لیتر باعث افزایش اسید آبسیزیک و کاهش اسید جیبرلیک در جوانههای تاک شد. به علاوه تیمار 20 گرم در لیتر موجب افزایش 16/15 درصدی مقدار آب جوانه و کاهش 24/33 درصدی نشت یونی نسبت به تاکهای شاهد شد. بیشترین مقدار پرولین، پروتئین، کربوهیدرات، قندهای محلول، فنول کل و فعالیت آنزیمهای آنتیاکسیدان مربوط به تاکهای تیمار شده با غلظت 10 و 20 گرم در لیتر کیتوزان بود. همچنین، کمترین مقدار مالوندیآلدهید (19/3 میکرومول در گرم وزنتر) و پراکسید هیدروژن (34/5 میکرومول در گرم وزنتر) در جوانه تاکهای تیمار شده با غلظت 20 گرم در لیتر مشاهده شد. با افزایش غلظت کیتوزان مقدار رنگیزههای فتوسنتزی برگ و پلیآمینها در جوانه افزایش یافت. همچنین تاکهای تیمار شده با غلظت 10 گرم در لیتر، مقدار پتاسیم، فسفر و کلسیم بیشتری داشتند. به طور کلی محلولپاشی با غلظت 10 و 20 گرم در لیتر کیتوزان در مرحله نوکپنبهای جوانه با تاثیر بر مقادیر هورمونها، پلیآمینها و دیگر شاخصهای فیزیولوژیکی ضمن القاء تحمل به سرما، تا 6 روز باعث تاخیر در زمان شکفتن جوانههای انگور یاقوتی شد. | ||
کلیدواژهها | ||
اسید آبسیزیک؛ تاک؛ سرمازدگی؛ قند محلول؛ کیتوزان؛ هورمونها | ||
عنوان مقاله [English] | ||
Effect of chitosan spray on cold tolerance physiology and budburst time of 'Yaghooti' grapevine | ||
نویسندگان [English] | ||
Hossein Safamanesh؛ Rouhollah Karimi | ||
Department of Horticulture and Landscape Engineering, Faculty of Agriculture, Malayer University, Malayer, Iran | ||
چکیده [English] | ||
The present study aimed to investigate the effect of foliar spray of chitosan (CS; 0, 5, 10 and 20 gr/L) at wooly bud stage (late March) on budburst time and physiological indices related to spring cold tolerance of 'Yaghooti' grapevine during 2021 and 2022. Based on the results, budburst time in vines treated with 10 gr/L CS was delayed up to 6 days compared to the control vines. Also, CS at 20 g/L, increased abscisic acid and decreased gibberellic acid in the bud. Furthermore, the 20 g/L of CS caused a 15.16% increase in the bud water content and a 33.24% decrease in ionic leakage of plant compared to the control. The vines sprayed with CS, especially the concentration of 10 and 20 g/L, had the highest amount of proline, protein, carbohydrates, soluble sugars, total phenol and activity of antioxidant enzymes. In addition, the lowest accumulation of MDA content and H2O2 occurred in the leaves of grape in the treatment of 20 g/L CS. With the increase in CS concentration, the amount of leaf photosynthetic pigments and bud endogenous polyamines in the leaves of grapevine increased. Vines treated with 10 g/L of CS had more potassium, phosphorus and calcium content. In general, spraying with CS at 10 and 20 gr/L in wooly bud stage through affecting bud’s hormones, polyamines and other physiological indices, while inducing cold tolerance, delayed budburst time up to 6 days in 'Yaghooti' grape. | ||
کلیدواژهها [English] | ||
Abscisic acid, Chilling injury, Grape, Hormones, Soluble sugar | ||
مراجع | ||
Aazami, M. A., Asghari-Aruq, M., Hassanpouraghdam, M. B., Ercisli, S., Baron, M., & Sochor, J. (2021). Low temperature stress mediates the antioxidants pool and chlorophyll fluorescence in Vitis vinifera L. cultivars. Plants, 10(9), 1877. https://doi.org/10.3390/plants10091877 Ahmad, B., Zaid, A., Sadiq, Y., Bashir, S., Wani, S.H. (2019). Role of Selective Exogenous Elicitors in Plant Responses to Abiotic Stress Tolerance. In M. Hasanuzzaman, K. Hakeem, K. Nahar and H. Alharby (Eds.) Plant Abiotic Stress Tolerance (pp. 273-290). Springer, Cham. https://doi.org/10.1007/978-3-030-06118-0_12 Arshad, M. A., Akhtar, G., Rajwana, I. A., Ullah, S., Hussain, M. B., Amin, M., & Ahmed, I. (2022). Foliar application of chitosan improves plant biomass, physiological and biochemical attributes of rose (Gruss-an-Teplitz). Kuwait Journal of Science, 49(2), 1-14. http://dx.doi.org/10.48129/kjs.11655 Attia, M. S., Osman, M. S., Mohamed, A. S., Mahgoub, H. A., Garada, M. O., Abdelmouty, E. S., & Abdel Latef, A. A. H. (2021). Impact of foliar application of chitosan dissolved in different organic acids on isozymes, protein patterns and physio-biochemical characteristics of tomato grown under salinity stress. Plants, 10(2), 388. http://dx.doi.org/10.3390/plants10020388 Bakhoum, G. S., Sadak, M. S., & Badr, E. A. E. M. (2020). Mitigation of adverse effects of salinity stress on sunflower plant (Helianthus annuus L.) by exogenous application of chitosan. Bulletin of the National Research Centre, 44, 1-11. https://doi.org/10.1186/s42269-020-00343-7 Balal, R. M., Shahid, M. A., Javaid, M. M., Iqbal, Z., Liu, G. D., Zotarelli, L., & Khan, N. (2017). Chitosan alleviates phytotoxicity caused by boron through augmented polyamine metabolism and antioxidant activities and reduced boron concentration in Cucumis sativus L. Acta Physiologiae Plantarum, 39, 1-15. https://doi.org/10.1007/s11738-016-2335-z Bates, L. S., Waldren, R. P. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060 Bergmeyer, N. (1970). Methoden der Enzymatischen Analyse, vol 1. AkademieVerlag, Berlin, pp. 636–647. Google Scholar Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10. 1016/0003-2697(76)90527-3 Chatelain, P. G., Pintado, M. E., & Vasconcelos, M. W. (2014). Evaluation of chitooligosaccharide application on mineral accumulation and plant growth in Phaseolus vulgaris. Plant Science, 215, 134-140. https://doi.org/10.1016/0003-2697(76)90527-3 Chien, P. J., Sheu, F., & Yang, F. H. (2007). Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. Journal of Food Engineering, 78(1), 225-229. https://doi.org/10.1016/j.jfoodeng. 2005.09.022 Comis, D. B., Tamayo, D. M., & Alonso, J. M. (2001). Determination of monosaccharides in cider by reversed-phase liquid chromatography. Analytica Chimica Acta, 436(1), 173-180. https://doi. org/10.1016/S0003-2670(01)00889-3 Eichhorn, K.W., & Lorenz, D.H. (1977) Phenological development stages of the grapevine. Nachrichtenblatt Dtsch Pflanzenschutzd. 29,119–20. Google Scholar El-Miniawy, S. M., Ragab, M. E., Youssef, S. M., & Metwally, A. A. (2013). Response of strawberry plants to foliar spraying of chitosan. Research Journal of Agriculture and Biological Sciences, 9(6), 366-372. https://www.cabdirect.org/cabdirect/abstract/20143098846 Ershadi, A., Karimi, R., & Mahdei, K. N. (2016). Freezing tolerance and its relationship with soluble carbohydrates, proline and water content in 12 grapevine cultivars. Acta Physiologiae Plantarum, 38, 1-10. https://doi.org/10.1007/s11738-015-2021-6 Eshghi, S., Karimi, R., Shiri, A., Karami, M., & Moradi, M. (2022). Effects of polysaccharide-based coatings on postharvest storage life of grape: Measuring the changes in nutritional, antioxidant and phenolic compounds. Journal of Food Measurement and Characterization, 16(2), 1159-1170. https://doi.org/10.1007/s11694-021-01275-0 Food and Agriculture Organization (2011) Statistical Yearbook. FAOSTAT, New York. http://www. fao.org/faostat/en/#data/QC/metadata Geng, W., Li, Z., Hassan, M. J., & Peng, Y. (2020). Chitosan regulates metabolic balance, polyamine accumulation, and Na+ transport contributing to salt tolerance in creeping bentgrass. BMC Plant Biology, 20, 1-15. https://doi.org/10.1007/s11694-021-01275-0 Hashim, N. F. A., Ahmad, A., & Bordoh, P. K. (2018). Effect of chitosan coating on chilling injury, antioxidant status and postharvest quality of Japanese cucumber during cold storage. Sains Malays, 47(2), 287-294. http://dx.doi.org/10.17576/jsm-2018-4702-10 Hassan, F. A. S., Ali, E., Gaber, A., Fetouh, M. I., & Mazrou, R. (2021). Chitosan nanoparticles effectively combat salinity stress by enhancing antioxidant activity and alkaloid biosynthesis in Catharanthus roseus (L.) G. Don. Plant Physiology and Biochemistry, 162, 291-300. https://doi.org/10.1016/j. plaphy.2021.03.004 Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. https://doi. org/10.1016/0003-9861(68)90654-1 Herzog, V., Fahimi, HD. (1973). Determination of the activity of peroxidase. Analytica Chimica Acta, 55, 554–562. DOI: https://10.1016/0003-2697(73)90144-9 Hidangmayum, A., Dwivedi, P., Katiyar, D., & Hemantaranjan, A. (2019). Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants, 25, 313-326. https://doi.org/10.1007/s12298-018-0633-1 Hosseini, M. S., Zahedi, S. M., Abadía, J., & Karimi, M. (2018). Effects of postharvest treatments with chitosan and putrescine to maintain quality and extend shelf‐life of two banana cultivars. Food science & nutrition, 6(5), 1328-1337. https://doi.org/10.1002/fsn3.662 Jiao, Z., Li, Y., Li, J., Xu, X., Li, H., Lu, D., & Wang, J. (2012). Effects of exogenous chitosan on physiological characteristics of potato seedlings under drought stress and rehydration. Potato Research, 55, 293-301. https://doi.org/10.1007/s11540-012-9223-8 Kahromi, S., & Khara, J. (2021). Chitosan stimulates secondary metabolite production and nutrient uptake in medicinal plant Dracocephalum kotschyi. Journal of the Science of Food and Agriculture, 101(9), 3898-3907. https://doi.org/10.1002/jsfa.11030 Karla, Y. P. (1998). Handbook of reference methods for plant analysis. CRC Press Inc Boca Raton, FL165170. Google Scholar Karimi, R. (2019). Spring frost tolerance increase in Sultana grapevine by early season application of calcium sulfate and zinc sulfate. Journal of Plant Nutrition, 42(19), 2666-2681. https://doi. org/10.1080/01904167.2019.1659343 Li, Z., Zhang, Y., Zhang, X., Merewitz, E., Peng, Y., Ma, X., & Yan, Y. (2017). Metabolic pathways regulated by chitosan contributing to drought resistance in white clover. Journal of Proteome Research, 16(8), 3039-3052. https://doi.org/10.1021/acs.jproteome.7b00334 Lichtenthaler, H. K. (1987). Chlorophyll and carotenoids: –pigments of photosynthetic biomembrances. In H. Sies, R. Douce, N. Clowick & N. Kaplan (Eds.), Methods in Enzymology Plant Cell Membranes, 148 (pp. 350-381). Academic Press, San Diego (CA). https://doi.org/10.1016/0076-6879(87)48036-1 Liu, J., Gai, L., & Zong, H. (2021). Foliage application of chitosan alleviates the adverse effects of cadmium stress in wheat seedlings (Triticum aestivum L.). Plant Physiology and Biochemistry, 164, 115-121. https://doi.org/10.1016/j.plaphy.2021.04.038 Mohamed, S. (2018). Effect of chitosan, putrescine and irrigation levels on the drought tolerance of sour orange seedlings. Egyptian Journal of Horticulture, 45(2), 257-273 https://doi 10.21608/ejoh.2018. 3063.1050 Molaei, S., Soleimani, A., Rabiei, V., & Razavi, F. (2021). Impact of chitosan in combination with potassium sorbate treatment on chilling injury and quality attributes of pomegranate fruit during cold storage. Journal of Food Biochemistry, 45(4), e13633. https://doi.org/10.1111/jfbc.13633 Muley, A. B., Shingote, P. R., Patil, A. P., Dalvi, S. G., & Suprasanna, P. (2019). Gamma radiation degradation of chitosan for application in growth promotion and induction of stress tolerance in potato (Solanum tuberosum L.). Carbohydrate Polymers, 210, 289-301. https://doi.org/10.1016/j.carbpol. 2019.01.056 Nakano, Y., & Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology, 22(5), 867-880. https://doi.org/10.1093/oxfordjournals. pcp.a076232 Qu, D. Y., Gu, W. R., Zhang, L. G., Li, C. F., Chen, X. C., Li, J., & Wei, S. (2019). Role of chitosan in the regulation of the growth, antioxidant system and photosynthetic characteristics of maize seedlings under cadmium stress. Russian Journal of Plant Physiology, 66, 140-151. https://doi.org/10.1134/ S102144371901014X Quitadamo, F., De Simone, V., Beleggia, R., & Trono, D. (2021). Chitosan-induced activation of the antioxidant defense system counteracts the adverse effects of salinity in durum wheat. Plants, 10(7), 1365. https://doi.org/10.3390/plants10071365 Salachna, P., & Zawadzińska, A. (2015). Comparison of morphological traits and mineral content in Eucomis autumnalis (Mill.) Chitt. plants obtained from bulbs treated with fungicides and coated with natural polysaccharides. Journal of Ecological Engineering, 16(2), 136-142. https://doi.org/ 10.12911/ 22998993/1868 Shehzad, M. A., Nawaz, F., Ahmad, F., Ahmad, N., & Masood, S. (2020). Protective effect of potassium and chitosan supply on growth, physiological processes and antioxidative machinery in sunflower (Helianthus annuus L.) under drought stress. Ecotoxicology and Environmental Safety, 187, 109841. https://doi.org/10.1016/j.ecoenv.2019.109841 Singh, R. K., Martins, V., Soares, B., Castro, I., & Falco, V. (2020). Chitosan application in vineyards induces accumulation of anthocyanins and other phenolics in berries, mediated by modifications in the transcription of secondary metabolism genes. International Journal of Molecular Sciences, 21(1), 306. https://doi.org/10.3390/ijms21010306 Suarez-Fernandez, M., Marhuenda-Egea, F. C., Lopez-Moya, F., Arnao, M. B., Cabrera-Escribano, F., Nueda, M. J., & Lopez-Llorca, L. V. (2020). Chitosan induces plant hormones and defenses in tomato root exudates. Frontiers in Plant Science, 11, 572087. https://doi.org/10.3389/fpls.2020.572087 Velikova, V., & Loreto, F. (2005). On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress. Plant, Cell & Environment, 28(3), 318-327. https://doi.org/10.1111/j.1365-3040.2004.01314.x Velioglu, Y., Mazza, G., Gao, L., & Oomah, B. D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46(10), 4113-4117. https://doi.org/10.1021/jf9801973 Vosnjak, M., Sircelj, H., Hudina, M., & Usenik, V. (2021). Response of chloroplast pigments, sugars and phenolics of sweet cherry leaves to chilling. Scientific Reports, 11(1), 7210. https://doi.org/10.1038/ s41598-021-86732-y Walter, H. J. P., & Geuns, J. M. (1987). High speed HPLC analysis of polyamines in plant tissues. Plant Physiology, 83(2), 232-234. https://doi.org/10.1104/pp.83.2.232 Wang, A., Li, J., Al-Huqail, A. A., Al-Harbi, M. S., Ali, E. F., Wang, J., & Eissa, M. A. (2021). Mechanisms of chitosan nanoparticles in the regulation of cold stress resistance in banana plants. Nanomaterials, 11(10), 2670. https://doi.org/10.3390/nano11102670 Wang, D., & Gao, Z. (2016). Expression of ABA metabolism-related genes suggests similarities and differences between seed dormancy and bud dormancy of peach (Prunus persica). Frontiers in Plant Science, 6, 170443. https://doi.org/10.3389/fpls.2015.01248 Wang, H., & Dami, I. E. (2020). Evaluation of budbreak-delaying products to avoid spring frost injury in grapevines. American Journal of Enology and Viticulture, 71(3), 181-190. https://doi.org/10.5344/ ajev.2020.19074 Webster, D. E. & Ebdon, J. S. (2005) Effects of nitrogen and potassium fertilization on perennial raygrass cold tolerance during deacclimation in late winter and early spring. Hort Science, 40, 842-849. https://doi.org/10.21273/HORTSCI.40.3.842 Xu, D., Li, H., Lin, L., Liao, M. A., Deng, Q., Wang, J., & Xia, H. (2020). Effects of carboxymethyl chitosan on the growth and nutrient uptake in Prunus davidiana seedlings. Physiology and Molecular Biology of Plants, 26, 661-668. https://doi.org/10.1007/s12298-020-00791-5 Yemm, E. W., & Willis, A. (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal, 57(3), 508. https://doi.org/10.1042/bj0570508 Zhang, G., Wang, Y., Wu, K., Zhang, Q., Feng, Y., Miao, Y., & Yan, Z. (2021). Exogenous application of chitosan alleviate salinity stress in lettuce (Lactuca sativa L.). Horticulturae, 7(10), 342. https://doi.org /10.3390/horticulturae7100342 | ||
آمار تعداد مشاهده مقاله: 168 تعداد دریافت فایل اصل مقاله: 138 |