
تعداد نشریات | 162 |
تعداد شمارهها | 6,692 |
تعداد مقالات | 72,232 |
تعداد مشاهده مقاله | 129,198,259 |
تعداد دریافت فایل اصل مقاله | 102,028,173 |
بهینه سازی ریزازدیادی پایه GN15 (هیبرید هلو و بادام) در شرایط بیوراکتور غوطهوری موقت | ||
علوم باغبانی ایران | ||
دوره 55، شماره 4، دی 1403، صفحه 577-596 اصل مقاله (1.85 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijhs.2024.367387.2129 | ||
نویسندگان | ||
احمد شریفی* ؛ سیده مهدیه خرازی؛ آزاده خادم | ||
گروه پژوهشی بیوتکنولوژی گیاهان باغبانی، پژوهشکده بیوتکنولوژی صنعتی، سازمان جهاد دانشگاهی خراسان رضوی، مشهد، ایران | ||
چکیده | ||
محیط کشت مایع به دلیل فراهم کردن محیط یکنواخت تر و عدم نیاز به جابجایی نمونههای کشت شده در هنگام تعویض محیط کشت، شرایط بهتری را برای ریزازدیادی گیاهان فراهم میکند. بهمنظور بررسی ریزازدیادی پایه GN15، ابتدا اثر ترکیب تنظیم کننده های مختلف بر استقرار ریزنمونه گره در محیط کشت نیمه جامد MS مورد ارزیابی قرار گرفت. سپس جهت مقایسه شرایط بیوراکتور غوطهوری موقت و کشت نیمه جامد بر ضریب تکثیر و سلامت گیاهان، در قالب سه آزمایش جداگانه، اثر دوره تناوب غوطهوری (غوطهوری 10 دقیقه در هر 6، 12 و 24 ساعت)، غلظت تنظیم کننده رشد (غلظتهای صفر، 5/0 و 1 میلیگرم در لیتر BA) و غلظت ساکارز (3، 4 و 5 درصد) در محیط کشت پایه MS مورد ارزیابی قرار گرفت. ریشه زایی گیاهچههای تکثیر شده نیز در محیط کشت MS حاوی 6/0 میلیگرم در لیترIBA در دو سیستم مورد بررسی قرار گرفت. استقرار ریزنمونهها در محیط کشت به شدت تحت تاثیر انتخاب تنظیم کنندههای رشد قرار گرفت، بهطوری که محیط کشت MS حاوی 5/0 میلیگرم در لیتر BA بهترین نتیجه را نشان داد. نتایج آزمایشهای تکثیر مشخص نمود که بیوراکتور غوطهوری موقت شرایط بهتری را برای رشد و تکثیر شاخسارههای GN15 فراهم میکند. بهترین شرایط با دوره غوطهوری 10 دقیقه در هر شش ساعت، محیط کشت حاوی 5/0 میلیگرم در لیتر BA و سه درصد ساکارز بهدست آمد. همچنین بیوراکتور غوطهوری موقت ارزیابی شده در این تحقیق برای ریشه زایی این پایه مناسب نبود و تمام گیاهچهها در این شرایط شیشهای شده و طی فرایند سازگاری از بین رفتند. | ||
کلیدواژهها | ||
تعلیق موقت؛ تهویه؛ رطوبت نسبی؛ شیشهای شدن؛ محیط کشت مایع | ||
عنوان مقاله [English] | ||
Micropropation of GN15 Rootstock (Hybrid of Almond and Peach) in Temporary Immersion Bioreactor | ||
نویسندگان [English] | ||
Ahmad Sharifi؛ Mahdiyeh Kharrazi؛ Azadeh khadem | ||
Horticultural Plants Biotechnology Department, Research Institute for Industrial Biotechnology, Iranian Academic Centre for Education, Culture and Research (ACECR)- Khorasan Razavi Branch, Mashhad, Iran. | ||
چکیده [English] | ||
The liquid medium creates optimal conditions for plant micropropagation by providing a more consistent environment and eliminating the hassle of explant transferring during the subcultures. This study was focused on the improving of GN15 rootstock micropropagation. At the first, the impact of various plant growth regulator combinations on node explant establishment in semi-solid MS medium was investigated to select the best establishment medium. Then the comparision between two culture system including temporary immersion bioreactor system and conventional semi-solid was performed to evaluate propagation rate and plant health of GN15 rootstock. To investigate the effects of immersion times (10 minutes every 6, 12, and 24 h), plant growth regulator concentrations (0, 0.5, and 1 mg/l BA) and sucrose concentrations (3, 4, and 5 %) in MS medium three separate experiments were designed. Rooting of microcuttings was assessed in both systems with MS medium containing 0.6 mg/l IBA. The resulted revealed that successful establishment of explants was heavily dependent on plant growth regulators, MS medium containg 0.5 mg/L BA was the best. The results also demonstrated that the temporary immersion system with 10-minute immersions frequency every 6 hours, 0.5 mg/L BA, and 3% sucrose created optimal growth conditions for GN15 shoots. However, the rooting and acclimatization tests revealed that the temporary immersion system was not suitable for rooting the GN15 rootstock under the studied conditions. In overall, to maximize the benefits of the temporary immersion system in GN15 micropropagation, it is recommended to utilize a two-stage strategy. This includes carrying out the propagation in the temporary immersion system followed by rooting the microcuttings in semi-solid media. | ||
کلیدواژهها [English] | ||
Humidity, Liquid medium, Temporary immersion, Ventilation, Vitrification | ||
مراجع | ||
باقری، سکینه؛ امیری، محمد اسماعیل؛ داودی، داریوش و انتصاری، مهرناز (1392). بررسی و مقایسه ظروف کشت رایج و بیوراکتورتناوبی جهت تکثیر انبوه پایه GF677 (هیبرید هلو× بادام). نشریه علوم باغبانی 27 (1)، 36-43. https://doi.org/10.22067/jhorts4.v0i0.20784 باقری، سکینه؛ امیری، محمد اسماعیل؛ داودی، داریوش و انتصاری، مهرناز (1395). تاثیر محیط کشتهای مختلف در ریزازدیادی پایه GF677 (هیبرید هلو - بادام). نشریه علوم باغبانی 30 (4)، 616-623. https://doi.org/10.22067/jhorts4.v0i0.32259 گنجی مقدم، ابراهیم؛ بلندی، احمد رضا و آناهید، صدیقه (1387). تکثیر درون شیشهای چهار ژنوتیپ پاکوتاه گزینش شده محلب. مجله پژوهش و سازندگی در منابع طبیعی. 79،54-61. مهدویان، مرتضی؛ بوذری، ناصر و عبدالهی، حمید (1389). اثر محیط کشت و تنظیم کننده رشد بر پرآوری و ریشهزایی پایه رویشی محلب (سنت لوسی 64). مجله به نژادی نهال و بذر 26 (1)، 15-26. https://doi.org/10.22092/spij.2017.110967 REFERENCES Abahmane, L. (2020). A comparative study between temporary immersion system and semi-solid cultures on shoot multiplication and plantlets production of two Moroccan date palm (Phoenix dactylifera L.) varieties in vitro. Notulae Scientia Biologicae, 12(2), 277-288. https://doi.org/10.15835/nsb12210610 Adelberg, J. (2017). Bioreactors and “smart vessels” for large-scale propagation. Acta Horticulturae, ISHS, 1187, 123-138. https://doi.org/10.17660/ActaHortic.2017.1187.15. Aguilar, M. E., Garita, K., Kim, Y. W., Kim, J. A., & Moon, H. K. (2019). Simple protocol for the micropropagation of teak (Tectona grandis Linn.) in semi-solid and liquid media in RITA® bioreactors and ex vitro rooting. American Journal of Plant Sciences, 10(7), 1121-1141. https://doi.org/ 10.4236/ajps.2019.107081 Aitken-Christie, J., & Jones, C. (1987). Towards automation: Radiata pine shoot hedges in vitro. Plant Cell, Tissue and Organ Culture, 8, 185-196. https://doi.org/10.1007/BF00040945 Aka Kaçar, Y., Biçen, B., Şimşek, Ö. Z. H. A. N., Dönmez, D., & Erol, M. (2020). Evaluation and comparison of a new type of temporary immersion system (TIS) bioreactors for myrtle (Myrtus communis L.). Applied Ecology and Environmental Research, 18(1),1611-1620. http://dx.doi.org/10.15666/aeer/1801_16111620 Akita, M., & Takayama, S. (1994). Stimulation of potato (Solanum tuberosum L.) tuberization by semicontinuous liquid medium surface level control. Plant Cell Reports, 13, 184-187. https://doi.org/10.1007/BF00239889 Arab, M. M., Yadollahi, A., Hosseini-Mazinani, M., & Bagheri, S. (2014). Effects of antimicrobial activity of silver nanoparticles on in vitro establishment of G× N15 (hybrid of almond× peach) rootstock. Journal of Genetic Engineering and Biotechnology, 12(2), 103-110. https://doi.org/10. 1016/j.jgeb.2014.10.002 Bagheri, S., Amiri, M. E., Davoodi, D. & Entesari, M. (2013). Study and comparison Jar and periodical bioreactor for mass propagation of rootstocks GF677 (Prunus amygdalus×Prunus persica). Journal of Horticultural Science, 27(1), 36-43. (In Persian). https://doi.org/10.22067/jhorts4.v0i0.20784 Bagheri, S., Davoudi, D., Amiri, M. E., Bayanati, M. & Entesari, M. (2016). The effect of different culture media on micropropagation of GF677 rootstock (peach-almond hybrid). Horticultural Science, 30(4), 616-623. (In Persian). https://doi.org/10.22067/jhorts4.v0i0.32259 Bahmani, R., Karami, O., & Gholami, M. (2009). Influence of carbon sources and their concentrations on rooting and hyperhydricity of apple rootstock MM. 106. World Applied Sciences Journal, 6(11), 1513-1517. Bartrina, I., Otto, E., Strnad, M., Werner, T., & Schmülling, T. (2011). Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. The Plant Cell, 23(1), 69-80. https://doi.org/10.1105/tpc.110.079079 Benelli, C., & De Carlo, A. (2018). In vitro multiplication and growth improvement of Olea europaea L. cv. Canino with temporary immersion system (Plantform™). 3 Biotech, 8(7), 317. https://doi.org/ 10.1007/s13205-018-1346-4 Berthouly, M., Dufour, M., Alvard, D., Carasco, C., Alemanno, L., & Teisson, C. (1995, 9-14 april). Coffee micropropagation in a liquid medium using the temporary immersion technique. Seizième colloque scientifique international sur le café, Kyoto, Japon. Cabasson, C., Alvard, D., Dambier, D., Ollitrault, P., & Teisson, C. (1997). Improvement of Citrus somatic embryo development by temporary immersion. Plant Cell, Tissue and Organ Culture, 50, 33-37. Cheong, E. J., & An, C. (2015). Effect of carbohydrates on in vitro shoot growth of various Prunus species. Korean J. Plant Res, 28(3), 357-362. https://doi.org/ 10. 1023/A:1005896725780 Cordovilla, M. P., Bueno, M., Aparicio, C., & Urrestarazu, M. (2014). Effects of salinity and the interaction between Thymus vulgaris and Lavandula angustifolia on growth, ethylene production and essential oil contents. Journal of Plant Nutrition, 37(6), 875-888. https://doi.org/ 10.1080/01904167.2013.873462 de Paiva Neto, V. B., & Otoni, W. C. (2003). Carbon sources and their osmotic potential in plant tissue culture: does it matter? Scientia Horticulturae, 97(3-4), 193-202. https://doi.org/10.1016/S0304-4238(02)00231-5 Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356. http://dx.doi.org/10.1021/ac60111a017 Egertsdotter, U., Ahmad, I., & Clapham, D. (2019). Automation and scale up of somatic embryogenesis for commercial plant production, with emphasis on conifers. Frontiers in Plant Science, 10, 109. https://doi.org/10.3389/fpls.2019.00109 Entesari, M., Davoodi, D., Haghnazari A., Bagheri S., Majidi E. & Habashi, A. A. (2012). Effect of alternative bioreactor on propagation and microtuberization parameters of potato (Solanum tuberosum L.). Journal of Crop Breeding. 4(9), 53-67. (In Persian). https://dor.isc.ac/dor/20.1001.1.22286128.1391.4.9.5.2 Etienne, H. & Berthouly, M. (2002). Temporary immersion systems in plant micropropagation. Plant Cell, Tissue and Organ Culture, 69, 215-231. https://doi.org/10.1023/A:1015668610465 Felipe, A. J. (2009). ‘Felinem’,‘Garnem’, and ‘Monegro’ almond× peach hybrid rootstocks. HortScience, 44(1), 196-197. https://doi.org/10.21273/HORTSCI.44.1.196 Ganji Moghadam, A., Bolandi, A. R. & Anahid, S. (2008). Invitro propagation of four selected dwarf genotypes of Mahlab. Research and Construction Journal in Natural Resources, 54, 61-79. (in Persian) Geng, F., Moran, R., Day, M., Halteman, W., & Zhang, D. (2016). Increasing in vitro shoot elongation and proliferation of ‘G. 30’ and ‘G. 41’ apple by chilling explants and plant growth regulators. HortScience, 51(7), 899-904. https://doi.org/10.21273/HORTSCI.51.7.899 Gerdakaneh, M., Mozafari, A. A., Khalighi, A., & Sioseh-Mardah, A. (2009). The effects of carbohydrate source and concentration on somatic embryogenesis of strawberry (Fragaria× ananassa Duch.). American-Eurasian Journal of Agricultural & Environmental Sciences, 6(1), 76-80. Huang, W. L., & Liu, L. F. (2002). Carbohydrate metabolism in rice during callus induction and shoot regeneration induced by osmotic stress. Botanical Bulletin of Academia Sinica, 43: 107–113. Ivanova, M., & Van Staden, J. (2009). Nitrogen source, concentration, and NH 4+: NO 3− ratio influence shoot regeneration and hyperhydricity in tissue cultured Aloe polyphylla. Plant Cell, Tissue and Organ Culture (PCTOC), 99, 167-174. https://doi.org/10.1007/s11240-009-9589-8
Kane, M.E. (2005). Shoot culture procedures (p. 154–157). In: R. Trigiano & D. Gray (eds.). Plant development and biotechnology. CRC Press, Boca Raton, FL. Kunakhonnuruk, B., Kongbangkerd, A., & Inthima, P. (2019). Improving large-scale biomass and plumbagin production of Drosera communis A. St.-Hil. by temporary immersion system. Industrial Crops and Products, 137, 197-202. https://doi.org/10.1016/j.indcrop.2019.05.039. Li, M., & Leung, D. W. (2000). Starch accumulation is associated with adventitious root formation in hypocotyl cuttings of Pinus radiata. Journal of Plant Growth Regulation, 19(4), 423. https://doi.org/ 10.1007/s003440000020 Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Current Protocols in Food Analytical Chemistry, 1(1), F4-3. https://doi.org/10.1002/0471142913.faf0403s01 Lotfi, M., Bayoudh, C., Werbrouck, S., & Mars, M. (2020). Effects of meta–topolin derivatives and temporary immersion on hyperhydricity and in vitro shoot proliferation in Pyrus communis. Plant Cell, Tissue and Organ Culture, 143, 499-505. https://doi.org/10.1007/s11240-020-01935-x Mahdavian, M. , Bouzari, N. & Abdollahi, H. (2010). Effects of culture media and growth regulators on proliferation and rooting of a vegetative Mahlab rootstock (SL-64). Seed and Plant Journal, 26(1), 15-26. (In Persian). https://doi.org/10.22092/spij.2017.110967 Matin, M. A., Brown, J. H., & Ferguson, H. (1989). Leaf water potential, relative water content, and diffusive resistance as screening techniques for drought resistance in barley. Agronomy Journal, 81(1), 100-105. https://doi.org/10.2134/agronj1989.00021962008100010018x Mehrotra, S., Goel, M. K., Kukreja, A. K., & Mishra, B. N. (2007). Efficiency of liquid culture systems over conventional micropropagation: A progress towards commercialization. African Journal of Biotechnology, 6(13),1484-1492. https://doi.org/10.5897/AJB2007.000-2211 Posada-Pérez, L., Montesinos, Y. P., Guerra, D. G., Daniels, D., & Gómez-Kosky, R. (2017). Complete germination of papaya (Carica papaya L. cv. Maradol Roja) somatic embryos using temporary immersion system type RITA® and phloroglucinol in semi-solid culture medium. In Vitro Cellular & Developmental Biology-Plant, 53, 505-513. https://doi.org/10.1007/s11627-017-9842-5 Pua, E. C., CHONG, C., & Rousselle, G. L. (1983). In vitro propagation of Ottawa 3 apple rootstock. Canadian Journal of Plant Science, 63(1), 183-188. https://doi.org/10.4141/cjps83-018 Ramage, C. M., & Williams, R. R. (2002). Mineral nutrition and plant morphogenesis. In Vitro Cellular & Developmental Biology-Plant, 38, 116-124. https://doi.org/10.1079/IVP2001269 Ramírez-Mosqueda, M. A., Cruz-Cruz, C. A., Cano-Ricárdez, A., & Bello-Bello, J. J. (2019). Assessment of different temporary immersion systems in the micropropagation of anthurium (Anthurium andreanum). 3 Biotech, 9, 1-7. https://doi.org/10.1007/s13205-019-1833-2 Ramírez-Mosqueda, M. A., Iglesias-Andreu, L. G., Ramírez-Madero, G., & Hernández-Rincón, E. U. (2016). Micropropagation of Stevia rebaudiana Bert. in temporary immersion systems and evaluation of genetic fidelity. South African Journal of Botany, 106, 238-243. https://doi.org/10.1016/j.sajb.2016.07.015 Ramirez-Vallejo, P., & Kelly, J. D. (1998). Traits related to drought resistance in common bean. Euphytica, 99, 127-136. https://doi.org/10.1023/A:1018353200015 Rosales, C., Brenes, J., Salas, K., Arce-Solano, S., & Abdelnour-Esquivel, A. (2018). Micropropagation of Stevia rebaudiana in temporary immersion systems as an alternative horticultural production method. Revista Chapingo. Serie Horticulturae, 24(1), 69-84. https://doi.org/10.5154/r.rchsh.2017.08.028 Ružić, D. V., & Vujović, T. I. (2008). The effects of cytokinin types and their concentration on in vitro multiplication of sweet cherry cv. Lapins (Prunus avium L.). Horticultural Science, 35(1), 12-21. https://doi.org/ 10.17221/646-HORTSCI Sairam, R. K. (1994). Effect of moisture-stress on physiological activities of two contrasting wheat genotypes. Indian Journal of Experimental Biology, 32, 594-594. Shokri, S., Babaei, A., Ahmadian, M., Arab, M. M., & Hessami, S. (2013). The effects of different concentrations of nano-silver on elimination of bacterial contaminations and phenolic exudation of rose (Rosa hybrida L.) in vitro culture. In VIII International Symposium on In Vitro Culture and Horticultural Breeding 1083 (pp. 391-396). https://doi.org/ 10.17660/ActaHortic.2015.1083.49 Uma, S., Karthic, R., Kalpana, S., Backiyarani, S., & Saraswathi, M. S. (2021). A novel temporary immersion bioreactor system for large scale multiplication of banana (Rasthali AAB—Silk). Scientific Reports, 11(1), 20371. https://doi.org/10.1038/s41598-021-99923-4 Vanstraelen, M., & Benková, E. (2012). Hormonal interactions in the regulation of plant development. Annual Review of Cell and Developmental Biology, 28, 463-487. https://doi.org/10.1146/annurev-cellbio-101011-155741 Yang, C. G., Gao, B., & Liu, J. R. (2012). Calcium ion and protocorm differentiation for Cymbidium hybrid Cymbidium Lucky Gloria× Cymbidium Lovely Moon 'Crescent'. Applied Mechanics and Materials, 195, 475-479. https://doi.org/10.4028/www.scientific.net/AMM.195-196.475 Yaseen, M., Ahmad, T., Abbasi, N. A., & Hafiz, I. A. (2009). Assessment of apple rootstocks M 9 and M 26 for in vitro rooting potential using different carbon sources. Pakistan Journal of Botany, 41(2), 769-81. Ying-Ning, Z. O. U. (2010). Micropropagation of Chinese Plum (Prunus salicina Lindl.) using mature stem segments. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(3), 214-218. https://doi.org/10.15835/nbha3834614 Zapata, P. J., Serrano, M., Pretel, M. T., Amorós, A., & Botella, M. Á. (2004). Polyamines and ethylene changes during germination of different plant species under salinity. Plant Science, 167(4), 781-788. https://doi.org/10.1016/j.plantsci.2004.05.014 Zhang, B., Song, L., Bekele, L. D., Shi, J., Jia, Q., Zhang, B., ... & Chen, J. (2018). Optimizing factors affecting development and propagation of Bletilla striata in a temporary immersion bioreactor system. Scientia Horticulturae, 232, 121-126. https://doi.org/10.1016/j.scienta.2018.01.007 Zhu, L. H., Li, X. Y., & Welander, M. (2005). Optimisation of growing conditions for the apple rootstock M26 grown in RITA containers using temporary immersion principle. In A. K. Hvoslef-Eide & W. Preil, (eds) Liquid Culture Systems for in vitro Plant Propagation (pp. 253-261). Springer, Dordrecht. https://doi.org/10.1007/1-4020-3200-5_17 Liquid culture systems for in vitro plant propagation, | ||
آمار تعداد مشاهده مقاله: 117 تعداد دریافت فایل اصل مقاله: 157 |